Theory of algebraic invariants / David Hilbert ; translated by Reinhard C. Laubenbacher ; [edited by Reinhard C. Laubenbacher ; with an introduction by Bernd Sturmfels].
Idioma: Inglés Lenguaje original: Alemán Series Cambridge mathematical libraryEditor: Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1993Descripción: xiv, 191 p. : ill. ; 23 cmISBN: 0521449030 (paperback); 0521444578 (hardback)Tema(s): InvariantsOtra clasificación: 01A75 (13A50) Recursos en línea: Publisher description | Table of contentsPreface page vii -- Introduction viii -- I The elements of invariant theory [2] -- 1.1 The forms [3] -- 1.2 The linear transformation [7] -- 1.3 The concept of an invariant [17] -- 1.4 Properties of invariants and covariants [20] -- 1.5 The operation symbols D and A [32] -- 1.6 The smallest system of conditions for the determination of the invariants and covariants [37] -- 1.7 The number of invariants of degree g [49] -- 1.8 The invariants and covariants of degrees two and three [61] -- 1.9 Simultaneous invariants and covariants [78] -- 110 Covariants of covariants [92] -- 1.11 The invariants and covariants as functions of the roots [98] -- 1.12 The invariants and covariants as functions of the one-sided derivatives [103] -- 1.13 The symbolic representation of invariants and covariants [105] -- II The theory of invariant fields [115] -- II. 1 Proof of the finiteness of the full invariant system via representation by root differences [115] -- 11.2 A generalizable proof for the finiteness of the full invariant system [121] -- 11.3 The system of invariants I; [134] -- 11.4 The vanishing of the invariants [141] -- 11.5 The ternary nullform [162] -- 11.6 The finiteness of the number of irreducible syzygies and of the syzygy chain [171] -- 11.7 The inflection point problem for plane curves of order three [180] -- 11.8 The generalization of invariant theory [183] -- 11.9 Observations about new types of coordinates [187] --
Item type | Home library | Shelving location | Call number | Materials specified | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
Libros | Instituto de Matemática, CONICET-UNS | Libros ordenados por tema | 13 H641 (Browse shelf) | Available | A-9401 |
Browsing Instituto de Matemática, CONICET-UNS shelves, Shelving location: Libros ordenados por tema Close shelf browser
13 D567 Topics in local algebra / | 13 F655 Invariant theory / | 13 G487 Multiplicative ideal theory / | 13 H641 Theory of algebraic invariants / | 13 K17 Commutative rings / | 13 K94-2 Idealtheorie / | 13 L165 Algèbre commutative : |
Includes bibliographical references (p. xiii-xiv).
Preface page vii --
Introduction viii --
I The elements of invariant theory [2] --
1.1 The forms [3] --
1.2 The linear transformation [7] --
1.3 The concept of an invariant [17] --
1.4 Properties of invariants and covariants [20] --
1.5 The operation symbols D and A [32] --
1.6 The smallest system of conditions for the determination of the invariants and covariants [37] --
1.7 The number of invariants of degree g [49] --
1.8 The invariants and covariants of degrees two and three [61] --
1.9 Simultaneous invariants and covariants [78] --
110 Covariants of covariants [92] --
1.11 The invariants and covariants as functions of the roots [98] --
1.12 The invariants and covariants as functions of the one-sided derivatives [103] --
1.13 The symbolic representation of invariants and covariants [105] --
II The theory of invariant fields [115] --
II. 1 Proof of the finiteness of the full invariant system via representation by root differences [115] --
11.2 A generalizable proof for the finiteness of the full invariant system [121] --
11.3 The system of invariants I; [134] --
11.4 The vanishing of the invariants [141] --
11.5 The ternary nullform [162] --
11.6 The finiteness of the number of irreducible syzygies and of the syzygy chain [171] --
11.7 The inflection point problem for plane curves of order three [180] --
11.8 The generalization of invariant theory [183] --
11.9 Observations about new types of coordinates [187] --
MR, REVIEW #
There are no comments on this title.