Theory of algebraic invariants / David Hilbert ; translated by Reinhard C. Laubenbacher ; [edited by Reinhard C. Laubenbacher ; with an introduction by Bernd Sturmfels].

Por: Hilbert, David, 1862-1943Colaborador(es): Sturmfels, Bernd, 1962-Idioma: Inglés Lenguaje original: Alemán Series Cambridge mathematical libraryEditor: Cambridge [England] ; New York, NY, USA : Cambridge University Press, 1993Descripción: xiv, 191 p. : ill. ; 23 cmISBN: 0521449030 (paperback); 0521444578 (hardback)Tema(s): InvariantsOtra clasificación: 01A75 (13A50) Recursos en línea: Publisher description | Table of contents
Contenidos:
Preface page vii --
Introduction viii --
I The elements of invariant theory [2] --
1.1 The forms [3] --
1.2 The linear transformation [7] --
1.3 The concept of an invariant [17] --
1.4 Properties of invariants and covariants [20] --
1.5 The operation symbols D and A [32] --
1.6 The smallest system of conditions for the determination of the invariants and covariants [37] --
1.7 The number of invariants of degree g [49] --
1.8 The invariants and covariants of degrees two and three [61] --
1.9 Simultaneous invariants and covariants [78] --
110 Covariants of covariants [92] --
1.11 The invariants and covariants as functions of the roots [98] --
1.12 The invariants and covariants as functions of the one-sided derivatives [103] --
1.13 The symbolic representation of invariants and covariants [105] --
II The theory of invariant fields [115] --
II. 1 Proof of the finiteness of the full invariant system via representation by root differences [115] --
11.2 A generalizable proof for the finiteness of the full invariant system [121] --
11.3 The system of invariants I; [134] --
11.4 The vanishing of the invariants [141] --
11.5 The ternary nullform [162] --
11.6 The finiteness of the number of irreducible syzygies and of the syzygy chain [171] --
11.7 The inflection point problem for plane curves of order three [180] --
11.8 The generalization of invariant theory [183] --
11.9 Observations about new types of coordinates [187] --
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 13 H641 (Browse shelf) Available A-9401

Includes bibliographical references (p. xiii-xiv).

Preface page vii --
Introduction viii --
I The elements of invariant theory [2] --
1.1 The forms [3] --
1.2 The linear transformation [7] --
1.3 The concept of an invariant [17] --
1.4 Properties of invariants and covariants [20] --
1.5 The operation symbols D and A [32] --
1.6 The smallest system of conditions for the determination of the invariants and covariants [37] --
1.7 The number of invariants of degree g [49] --
1.8 The invariants and covariants of degrees two and three [61] --
1.9 Simultaneous invariants and covariants [78] --
110 Covariants of covariants [92] --
1.11 The invariants and covariants as functions of the roots [98] --
1.12 The invariants and covariants as functions of the one-sided derivatives [103] --
1.13 The symbolic representation of invariants and covariants [105] --
II The theory of invariant fields [115] --
II. 1 Proof of the finiteness of the full invariant system via representation by root differences [115] --
11.2 A generalizable proof for the finiteness of the full invariant system [121] --
11.3 The system of invariants I; [134] --
11.4 The vanishing of the invariants [141] --
11.5 The ternary nullform [162] --
11.6 The finiteness of the number of irreducible syzygies and of the syzygy chain [171] --
11.7 The inflection point problem for plane curves of order three [180] --
11.8 The generalization of invariant theory [183] --
11.9 Observations about new types of coordinates [187] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha