The theory of functions / by E. C. Titchmarsh.

Por: Titchmarsh, E. C. (Edward Charles), 1899-1963Editor: Oxford : Oxford University Press, 1939Edición: 2nd edDescripción: x, 454 p. ; 23 cmOtra clasificación: 30-01 (26-01 28-01)
Contenidos:
CHAPTER I
INFINITE SERIES, PRODUCTS, AND INTEGRALS
1.1. Uniform convergence of series [2]
1.2. Series of complex terms. Power series [8]
1.3. Series which are not uniformly convergent [11]
1.4. Infinite products [13]
1.5. Infinite integrals [19]
1.6. Double series [27]
1.7. Integration of series [36]
1.8. Repeated integrals. The Gamma-function [48]
1.88. Differentiation of integrals [59]
CHAPTER II
ANALYTIC FUNCTIONS
2.1. Functions of a complex variable [64]
2.2. The complex differential calculus [70]
2.3. Complex integration. Cauchy’s theorem [71]
2.4. Cauchy’s integral. Taylor’s series [80]
2.5. Cauchy’s inequality. Liouville’s thorem [84]
2.6. The zeros of an analytic function [87]
2.7. Laurent series. Singularities [89]
2.8. Series and integrals of analytic functions [95]
2.9. Remark on Laurent Series [101]
CHAPTER III
RESIDUES, CONTOUR INTEGRATION, ZEROS
3.1. Residues. Contour integration [102]
3.2. Meromorphic functions. Integral functions [110]
3.3. Summation of certain series [114]
3.4. Poles and zeros of a meromorphic function [115]
3.5. The modulus, and real and imaginary parts, of an analytic function [119]
3.6. Poisson’s integral. Jensen’s theorem [124]
3.7. Carleman’s theorem [130]
3.8. A theorem of Littlewood [132]
CHAPTER IV
ANALYTIC CONTINUATION
4.1. General theory [138]
4.2. Singularities [143]
4.3. Riemann surfaces [146]
4.4. Eunctions defined by integrals. The Gamma-function. The Zeta-function [147]
4.5. The principle of reflection [155]
4.6. Hadamard’s multiplication theorem [157]
4.7. Functions with natural boundaries [159]
CHAPTER V
THE MAXIMUM-MODULUS THEOREM
5.1. The maximum-modulus theorem [165]
5.2. Schwarz’s theorem. Vitali’s theorem. Montel’s theorem [168]
5.3. Hadamard’s three-circles theorem [172]
5.4. Mean values of |f(z)| [173]
5.5. The Borel-Carathedory inequality [174]
5.6. The Phragmen-Lindelof theorems [176]
5.7. The Phragmen-Lindelof function h(ϴ) [181]
5.8. Applications [185]
CHAPTER VI
CONFORMAL REPRESENTATION
6.1. General theory [188]
6.2. Linear transformations [190]
6.3. Various transformations [195]
6.4. Simple (schlicht) functions [198]
6.5. Application of the principle of reflection [203]
6.6. Representation of a polygon on a half-plane [205]
6.7. General existence theorems [207]
6.8. Further properties of simple functions [209]
CHAPTER VII
POWER SERIES WITH A FINITE RADIUS OF CONVERGENCE
7.1. The circle of convergence [213]
7.2. Position of the singularities [214]
7.3. Convergence of the series and regularity of the function [217]
7.4. Over-convergence. Gap theorems [220]
7.5. Asymptotic behaviour near the circle of convergence [224]
7.6. Abel’s theorem and its converse [229]
7.7. Partial sums of a power series [235]
7.8. The zeros of partial sums [238]
CHAPTER VIII
INTEGRAL FUNCTIONS
8.1. Factorization of integral functions [246]
8.2. Functions of finite order [248]
8.3. The coefficients in the power series [253]
8.4. Examples [253]
8.5. The derived function [265]
8.6. Functions with real zeros only [268]
8.7. The minimum modulus [273]
8.8. The a-points of an integral function. Picard’s theorem [277]
8.9. Meromorphic functions 284 b
CHAPTER IX DIRICHLET SERIES
9.1. Introduction. Convergence. Absolute convergence [289]
9.2. Convergence of the series and regularity of the function [294]
9.3. Asymptotic behaviour [295]
9.4. Functions of finite order [298]
9.5. The mean-value formula and half-plane [303]
9.6. The uniqueness theorem. Zeros [309]
9.7. Representation of functions by Dirichlet series [313]
CHAPTER X
THE THEORY OF MEASURE AND THE LEBESGUE INTEGRAL
10.1. Riemann integration [318]
10.2. Sets of points. Measure [319]
10.3. Measurable functions [330]
10.4. The Lebesgue integral of a bounded function [332]
10.5. Bounded convergence [337]
10.6. Comparison between Riemann and Lebesgue integrals [339]
10.7. The Lebesgue integral of an unbounded function [341]
10.8. General convergence theorems [345]
10.9. Integrals over an infinite range [347]
CHAPTER XI
DIFFERENTIATION AND INTEGRATION
11.1. Introduction [349]
11.2. Differentiation throughout an interval. Non-differentiable functions [350]
11.3. The four derivates of a function [354]
11.4. Functions of bounded variation [355]
11.5. Integrals [359]
11.6. The Lebesgue set [362]
11.7. Absolutely continuous functions [364]
11.8. Integration of a differential coefficient [367]
CHAPTER XII
FURTHER THEOREMS ON LEBESGUE INTEGRATION
12.1. Integration by parts [375]
12.2. Approximation to an integrable function. Change of the independent variable [376]
12.3. The second mean-value theorem [379]
12.4. The Lebesgue class Lp [381]
12.5. Mean convergence [386]
12.6. Repeated integrals [390]
CHAPTER XIII
FOURIER SERIES
13.1. Trigonometrical series and Fourier series [399]
13.2. Dirichlet’s integral. Convergence tests [402]
13.3. Summation by arithmetic means [411]
13.4. Continuous functions with divergent Fourier series [416]
13.5. Integration of Fourier series. Parseval’s theorem [419]
13.6. Functions of the class L2. Bessel’s inequality. The Riesz-Fischer theorem [422]
13.7. Properties of Fourier coefficients [425]
13.8. Uniqueness of trigonometrical series [427]
13.9. Fourier integrals [432]
BIBLIOGRAPHY [445]
GENERAL INDEX [453]
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Copy number Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 30 T617 (Browse shelf) Available A-949

VARIABLE COMPLEJA

Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 30 T617 (Browse shelf) Ej. 2 Available A-2067
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 30 T617 (Browse shelf) Ej. 3 Available A-6241

Reimpresión con correcciones, 1952.

CHAPTER I --
INFINITE SERIES, PRODUCTS, AND INTEGRALS --
1.1. Uniform convergence of series [2] --
1.2. Series of complex terms. Power series [8] --
1.3. Series which are not uniformly convergent [11] --
1.4. Infinite products [13] --
1.5. Infinite integrals [19] --
1.6. Double series [27] --
1.7. Integration of series [36] --
1.8. Repeated integrals. The Gamma-function [48] --
1.88. Differentiation of integrals [59] --
CHAPTER II --
ANALYTIC FUNCTIONS --
2.1. Functions of a complex variable [64] --
2.2. The complex differential calculus [70] --
2.3. Complex integration. Cauchy’s theorem [71] --
2.4. Cauchy’s integral. Taylor’s series [80] --
2.5. Cauchy’s inequality. Liouville’s thorem [84] --
2.6. The zeros of an analytic function [87] --
2.7. Laurent series. Singularities [89] --
2.8. Series and integrals of analytic functions [95] --
2.9. Remark on Laurent Series [101] --
CHAPTER III --
RESIDUES, CONTOUR INTEGRATION, ZEROS --
3.1. Residues. Contour integration [102] --
3.2. Meromorphic functions. Integral functions [110] --
3.3. Summation of certain series [114] --
3.4. Poles and zeros of a meromorphic function [115] --
3.5. The modulus, and real and imaginary parts, of an analytic function [119] --
3.6. Poisson’s integral. Jensen’s theorem [124] --
3.7. Carleman’s theorem [130] --
3.8. A theorem of Littlewood [132] --
CHAPTER IV --
ANALYTIC CONTINUATION --
4.1. General theory [138] --
4.2. Singularities [143] --
4.3. Riemann surfaces [146] --
4.4. Eunctions defined by integrals. The Gamma-function. The Zeta-function [147] --
4.5. The principle of reflection [155] --
4.6. Hadamard’s multiplication theorem [157] --
4.7. Functions with natural boundaries [159] --
CHAPTER V --
THE MAXIMUM-MODULUS THEOREM --
5.1. The maximum-modulus theorem [165] --
5.2. Schwarz’s theorem. Vitali’s theorem. Montel’s theorem [168] --
5.3. Hadamard’s three-circles theorem [172] --
5.4. Mean values of |f(z)| [173] --
5.5. The Borel-Carathedory inequality [174] --
5.6. The Phragmen-Lindelof theorems [176] --
5.7. The Phragmen-Lindelof function h(ϴ) [181] --
5.8. Applications [185] --
CHAPTER VI --
CONFORMAL REPRESENTATION --
6.1. General theory [188] --
6.2. Linear transformations [190] --
6.3. Various transformations [195] --
6.4. Simple (schlicht) functions [198] --
6.5. Application of the principle of reflection [203] --
6.6. Representation of a polygon on a half-plane [205] --
6.7. General existence theorems [207] --
6.8. Further properties of simple functions [209] --
CHAPTER VII --
POWER SERIES WITH A FINITE RADIUS OF CONVERGENCE --
7.1. The circle of convergence [213] --
7.2. Position of the singularities [214] --
7.3. Convergence of the series and regularity of the function [217] --
7.4. Over-convergence. Gap theorems [220] --
7.5. Asymptotic behaviour near the circle of convergence [224] --
7.6. Abel’s theorem and its converse [229] --
7.7. Partial sums of a power series [235] --
7.8. The zeros of partial sums [238] --
CHAPTER VIII --
INTEGRAL FUNCTIONS --
8.1. Factorization of integral functions [246] --
8.2. Functions of finite order [248] --
8.3. The coefficients in the power series [253] --
8.4. Examples [253] --
8.5. The derived function [265] --
8.6. Functions with real zeros only [268] --
8.7. The minimum modulus [273] --
8.8. The a-points of an integral function. Picard’s theorem [277] --
8.9. Meromorphic functions 284 b --
CHAPTER IX DIRICHLET SERIES --
9.1. Introduction. Convergence. Absolute convergence [289] --
9.2. Convergence of the series and regularity of the function [294] --
9.3. Asymptotic behaviour [295] --
9.4. Functions of finite order [298] --
9.5. The mean-value formula and half-plane [303] --
9.6. The uniqueness theorem. Zeros [309] --
9.7. Representation of functions by Dirichlet series [313] --
CHAPTER X --
THE THEORY OF MEASURE AND THE LEBESGUE INTEGRAL --
10.1. Riemann integration [318] --
10.2. Sets of points. Measure [319] --
10.3. Measurable functions [330] --
10.4. The Lebesgue integral of a bounded function [332] --
10.5. Bounded convergence [337] --
10.6. Comparison between Riemann and Lebesgue integrals [339] --
10.7. The Lebesgue integral of an unbounded function [341] --
10.8. General convergence theorems [345] --
10.9. Integrals over an infinite range [347] --
CHAPTER XI --
DIFFERENTIATION AND INTEGRATION --
11.1. Introduction [349] --
11.2. Differentiation throughout an interval. Non-differentiable functions [350] --
11.3. The four derivates of a function [354] --
11.4. Functions of bounded variation [355] --
11.5. Integrals [359] --
11.6. The Lebesgue set [362] --
11.7. Absolutely continuous functions [364] --
11.8. Integration of a differential coefficient [367] --
CHAPTER XII --
FURTHER THEOREMS ON LEBESGUE INTEGRATION --
12.1. Integration by parts [375] --
12.2. Approximation to an integrable function. Change of the independent variable [376] --
12.3. The second mean-value theorem [379] --
12.4. The Lebesgue class Lp [381] --
12.5. Mean convergence [386] --
12.6. Repeated integrals [390] --
CHAPTER XIII --
FOURIER SERIES --
13.1. Trigonometrical series and Fourier series [399] --
13.2. Dirichlet’s integral. Convergence tests [402] --
13.3. Summation by arithmetic means [411] --
13.4. Continuous functions with divergent Fourier series [416] --
13.5. Integration of Fourier series. Parseval’s theorem [419] --
13.6. Functions of the class L2. Bessel’s inequality. The Riesz-Fischer theorem [422] --
13.7. Properties of Fourier coefficients [425] --
13.8. Uniqueness of trigonometrical series [427] --
13.9. Fourier integrals [432] --
BIBLIOGRAPHY [445] --
GENERAL INDEX [453] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha