Normal view

## Axiomatic set theory / by Patrick Suppes.

Editor: Princeton, New Jersey : D. van Nostrand, c1960Descripción: xii, 265 p. ; 24 cmOtra clasificación: 03E30 (03Exx)
Contenidos:
```1. INTRODUCTION 
1.1 Set Theory and the Foundations of Mathematics 
1.2 Logic and Notation 
1.3 Axiom Schema of Abstraction and Russell's Paradox 
1.5 Preview of Axioms 
2. GENERAL DEVELOPMENTS 
2.1 Preliminaries: Formulas and Definitions 
2.2 Axioms of Extensionality and Separation 
2.3 Intersection, Union, and Difference of Sets 
2.4 Pairing Axiom and Ordered Pairs 
2.5 Definition by Abstraction 
2.6 Sum Axiom and Families of Sets 
2.7 Power Set Axiom 
2.8 Cartesian Product of Sets 
2.9 Axiom of Regularity 
2.10 Summary of Axioms 
3. RELATIONS AND FUNCTIONS 
3.1 Operations on Binary Relations 
3.2 Ordering Relations 
3.3 Equivalence Relations and Partitions 
3.4 Functions 
4. EQUIPOLLENCE, FINITE SETS, AND CARDINAL NUMBERS 
4.1 Equipollence 
4.2 Finite Sets 
4.3 Cardinal Numbers 
4.4 Finite Cardinals 
5. FINITE ORDINALS AND DENUMERABLE SETS 
5.1 Definition and General Properties of Ordinals 
5.2 Finite Ordinals and Recursive Definitions 
5.3 Denumerable Sets 
6. RATIONAL NUMBERS AND REAL NUMBERS 
6.1 Introduction 
6.2 Fractions 
6.3 Non-negative Rational Numbers 
6.4 Rational Numbers 
6.5 Cauchy Sequences of Rational Numbers 
6.6 Real Numbers 
6.7 Sets of the Power of the Continuum 
7. TRANSFINITE INDUCTION AND ORDINAL ARITHMETIC 
7.1 Transfinite Induction and Definition by Transfinite Recursion 
7.2 Elements of Ordinal Arithmetic 
7.3 Cardinal Numbers Again and Alephs 
7.4 Well-Ordered Sets 
7.5 Revised Summary of Axioms 
8. THE AXIOM OF CHOICE 
8.1 Some Applications of the Axiom of Choice 
8.2 Equivalents of the Axiom of Choice 
8.3 Axioms Which Imply the Axiom of Choice 
References 
Glossary of Symbols 
Author Index 
Subject Index 
``` Average rating: 0.0 (0 votes)
Item type Home library Call number Materials specified Status Date due Barcode Course reserves Libros
03 Su959 (Browse shelf) Available A-886

Incluye referencias bibliográficas (p. 253-256) e índices.

1. INTRODUCTION  --
1.1 Set Theory and the Foundations of Mathematics  --
1.2 Logic and Notation  --
1.3 Axiom Schema of Abstraction and Russell's Paradox  --
1.5 Preview of Axioms  --
2. GENERAL DEVELOPMENTS  --
2.1 Preliminaries: Formulas and Definitions  --
2.2 Axioms of Extensionality and Separation  --
2.3 Intersection, Union, and Difference of Sets  --
2.4 Pairing Axiom and Ordered Pairs  --
2.5 Definition by Abstraction  --
2.6 Sum Axiom and Families of Sets  --
2.7 Power Set Axiom  --
2.8 Cartesian Product of Sets  --
2.9 Axiom of Regularity  --
2.10 Summary of Axioms  --
3. RELATIONS AND FUNCTIONS  --
3.1 Operations on Binary Relations  --
3.2 Ordering Relations  --
3.3 Equivalence Relations and Partitions  --
3.4 Functions  --
4. EQUIPOLLENCE, FINITE SETS, AND CARDINAL NUMBERS  --
4.1 Equipollence  --
4.2 Finite Sets  --
4.3 Cardinal Numbers  --
4.4 Finite Cardinals  --
5. FINITE ORDINALS AND DENUMERABLE SETS  --
5.1 Definition and General Properties of Ordinals  --
5.2 Finite Ordinals and Recursive Definitions  --
5.3 Denumerable Sets  --
6. RATIONAL NUMBERS AND REAL NUMBERS  --
6.1 Introduction  --
6.2 Fractions  --
6.3 Non-negative Rational Numbers  --
6.4 Rational Numbers  --
6.5 Cauchy Sequences of Rational Numbers  --
6.6 Real Numbers  --
6.7 Sets of the Power of the Continuum  --
7. TRANSFINITE INDUCTION AND ORDINAL ARITHMETIC  --
7.1 Transfinite Induction and Definition by Transfinite Recursion  --
7.2 Elements of Ordinal Arithmetic  --
7.3 Cardinal Numbers Again and Alephs  --
7.4 Well-Ordered Sets  --
7.5 Revised Summary of Axioms  --
8. THE AXIOM OF CHOICE  --
8.1 Some Applications of the Axiom of Choice  --
8.2 Equivalents of the Axiom of Choice  --
8.3 Axioms Which Imply the Axiom of Choice  --
References  --
Glossary of Symbols  --
Author Index  --
Subject Index  --

MR, 22 #5576

There are no comments on this title.