Coherent analytic sheaves / Hans Grauert, Reinhold Remmert.

Por: Grauert, Hans, 1930-Colaborador(es): Remmert, ReinholdSeries Grundlehren der mathematischen Wissenschaften ; 265Editor: Berlin ; New York : Spinger-Verlag, 1984Descripción: xviii, 249 p. : ill. ; 24 cmISBN: 0387131787 (U.S.)Tema(s): Coherent analytic sheavesOtra clasificación: msc2020
Contenidos:
Chapter 1. Complex Spaces [1]--
§1. The Notion of a Complex Space [1]--
0. Ringed Spaces - 1. The Space ((0", 0) - 2. Zero Sets and Complex Model Spaces ---
3. Sheaves of Local (D-Algebras. (E-ringed Spaces - 4. Morphisms of (T-ringed Spaces - 5. Complex Spaces - 6. Sections and Functions - 7. Construction of Complex Spaces by Gluing - 8. The Complex Projective Space IF}, - 9. Historical Notes--
§2. General Properties of Complex Spaces [13]--
1. Zero Sets of Ideal Sheaves - 2. Closed Complex Subspaces - 3. Factorization of Holomorphic Maps - 4. Complex Spaces and Coherent Analytic Sheaves. Extension Principle - 5. Analytic Image Sheaves - 6. Analytic Inverse Image Sheaves -7. Holomorphic Embeddings--
§ 3. Direct Products and Graphs [22]--
1. The Bijection Extension of Holomorphic Maps - 2. Complex--
Direct Products - 3. Existence of Canonical Products. Local Case - 4. Existence of Canonical Products. Global Case - 5. Graph Space of a Holomorphic Map--
§ 4. Complex Spaces and Cohomology 3q--
1. Divisors - 2. Holomorphic Vector Bundles - 3. Line Bundles and Divisors ---
4. Holomorphically Convex Spaces and Stein Spaces - 5. Cech Cohomology of Analytic Sheaves - 6. Cohomology of Coherent Sheaves with Respect to Stein Coverings - 7. Higher Dimensional Direct Images--
Chapter 2. Local Weierstrass Theory [38]--
§ 1. The Weierstrass Theorems 3g 0. Generalities - 1. The WeierstraB Division Theorem - 2. The WeierstraB Preparation Theorem - 3. A Simple Observation--
§ 2. Algebraic Structure of 0^, 0 43 1. Noether Property and Factoriality - 2. Hensel’s Lemma - 3. Closedness of Submodules--
§ 3. Finite Maps 45 1. Closed Maps - 2. Finite Maps. Local Description - 3. Local Representation of Image Sheaves - 4. Exactness of the Functor for Finite Maps - 5. WeierstraB Maps--
§4. The Weierstrass Isomorphism [53]--
1. The Generalized WeierstraB Division Theorem - 2. The WeierstraB Isomorphism -3. A Coherence Lemma - 4. A Further Generalization of the Generalized WeierstraB Division Theorem--
§ 5. Coherence of Structure Sheaves 57 1. Formal Coherence Criterion - 2. The Coherence of 0^ - 3. Coherence of all Structure Sheaves 0x--
Chapter 3. Finite Holomorphic Maps [61]--
§ 1. Finite Mapping Theorem 61 |--
1. Projection Lemma - 2. Finite Holomorphic Maps and Isolated Points - 3. Finite Mapping Theorem--
§2. Ruckert Nullstellensatz for Coherent Sheaves [66]--
1. Preliminary Version - 2. Ruckert Nullstellensatz--
§ 3. Finite Open Holomorphic Maps 0 67 I 1. A Necessary Condition for Openness - 2. Torsion Sheaves and Criterion of Openness - 3. Coherence of Torsion Sheaves and Open Mapping Lemma - 4. Existence of Finite Open Projections--
§ 4. Local Description of Complex Subspaces in C" [72]--
1. The Local Description Lemma - 2. Proof of the Local Description Lemma--
Chapter 4. Analytic Sets. Coherence of Ideal Sheaves [75]--
§ 1. Analytic Sets and their Ideal Sheaves [75]--
1. Analytic Sets - 2. Ideal Sheaf of an Analytic Set - 3. Local Decomposition Lemma - 4. Prime Components. Criterion of Reducibility - 5. Ruckert Nullstellensatz for Ideal Sheaves - 6. Analytic Sets and Finite Holomorphic Maps--
§2. Coherence of the Sheaves <(A) [84]--
1. Proof of Coherence in a Special Case - 2. Reduction to Analytic Sets in Domains of §3. Applications of the Fundamental Theorem and of the Nullstellensatz [87]--
1. Analytic Sets and Reduced Closed Complex Subspaces - 2. Reduction of Complex Spaces - 3. Reduced Complex Spaces--
§4. Coherent and Locally Free Sheaves [90]--
1. Corank of a Coherent Sheaf - 2. Characterization of Locally Free Sheaves--
Chapter 5. Dimension Theory [93]--
§ 1. Analytic and Algebraic Dimension 93 1. Analytic Dimension of Complex Spaces. Upper Semi-Continuity - 2. Analytic and Algebraic Dimension - 3. Dimension of the Reduction and of Analytic Sets--
§ 2. Active Germs and the Active Lemma [97]--
l. The Sheaf of Active Germs - 2. Criterion of Activity - 3. Existence of Active Functions. Lifting Lemma - 4. Active Lemma--
§3. Applications of the Active Lemma [101]--
1. Basic Properties of Dimension. Ritt’s Lemma - 2. Analytic Sets of Maximal Dimension - 3. Computation of the Dimension of Analytic Sets in §4. Dimension and Finite Maps. Pure Dimensional Spaces [105]--
1. Invariance of Dimension under Finite Maps - 2. Pure Dimensional Complex Spaces - 3. Open Finite Maps and Dimension. Open Mapping Theorem - 4. Local Prime Components (revisited)--
§5. Maximum Principle [108]--
1. Open Mapping Theorem for Holomorphic Functions - 2. Local and Absolute Maximum Principle - 3. Maximum Principle for Complex Spaces with Boundary--
§6. Noether Lemma for Coherent Analytic Sheaves [110]--
1. Statement of the Lemma and Applications - 2. Proof of the Lemma--
Chapter 6. Analyticity of the Singular Locus. Normalization of the Struc-ture Sheaf [113]--
§1. Embedding Dimension [113]--
1. Embedding Dimension. Jacobi Criterion - 2. Analyticity of the Sets X(k). Algebraic Description of emb* X--
§ 2. Smooth Points and the Singular Locus [115]--
1. Smooth Points and Singular Locus - 2. Analyticity of the Singular Locus - 3. A Property of the Ideals «'(S(X))*, xeS(X)--
§ 3. The Sheaf of Germs of Meromorphic Functions [119]--
1. The Sheaf Jf — 2. The Zero Set and the Polar Set of a Meromorphic Function -3. The Lifting Monomorphism--
§4. The Normalization Sheaf [123]--
1. The Normalization Sheaf Normal Points - 2. Normality and Irreducibility at a Point--
§5. Criterion of Normality. Theorem of Oka [125]--
1. The Canonical ©^.-homomorphism .^-2. Criterion of Nor---
mality. Theorem of Oka - 3. Singular Locus and Normal Points--
Chapter 7. Riemann Extension Theorem and Analytic Coverings [130]--
§1. Riemann Extension Theorem on Complex Manifolds [130]--
l. First Riemann Theorem - 2. Second Riemann Theorem - 3. Riemann Extension Theorem on Complex Manifolds. Criterion of Connectedness--
§2. Analytic Coverings . 133 1. Definition and Elementary Properties - 2. Covering Lemma and Existence of Open Coverings - 3. Open Analytic Coverings--
§3. Theorem of Primitive Element [137]--
1. Theorem of Integral Dependence - 2. A Lemma about Holomorphic Determinants. Discriminants - 3. Theorem of Primitive Element. Universal Denominators - 4. The Sheaf Monomorphism--
§4. Applications of the Theorem of Primitive Element [143]--
1. Riemann Extension Theorem on Locally Pure Dimensional Complex Spaces ---
2. Characterization of Normality by the Riemann Extension Theorem - 3. Weier-straB Convergence Theorem on Locally Pure Dimensional Complex Spaces--
§5. Analytically Normal Vector Bundles [146]--
1. General Remarks - 2. Decent Vector Bundles - 3. Analytically Normal Vector Bundles and Normal Cones - 4. Whitney Sums of Analytically Normal Bundles ---
5. Discussion of the Cones Akm--
Chapter 8. Normalization of Complex Spaces [152]--
§ 1. One-Sheeted Analytic Coverings [152]--
1. Examples - 2. General Structure of One-Sheeted Coverings - 3. The Isomorphisms t>: and 6:--
§ 2. The Local Existence Theorem. Coherence of the Normalization Sheaf [156]--
1. Admissible Sheaves and the Local Existence Theorem - 2. Proof of the Local Existence Theorem - 3. Coherence of the Normalization Sheaf--
§3. The Global Existence Theorem. Existence of Normalization Spaces 159 1. Linking Isomorphisms - 2. The Global Existence Theorem - 3. Existence of a Normalization--
§4. Properties of the Normalization [162]--
1. The Space of Prime Germs. Topological Structure of Normalization Spaces ---
2. Uniqueness of the Normalization - 3. Lifting of Holomorphic Maps - 4. Injective Holomorphic Maps--
Chapter 9. Irreducibility and Connectivity. Extension of Analytic Sets [167]--
§ 1. Irreducible Complex Spaces [167]--
1. Identity Lemma - 2. Irreducible Complex Spaces - 3. Properties of Irreducible Complex Spaces--
§2. Global Decomposition of Complex Spaces [171]--
1. Connected Components - 2. Global Decomposition Theorem - 3. Global and Local Decomposition. Global Maximum Principle - 4. Proper Maps - 5. Holomorphically Spreadable Spaces--
§3. Local and Arcwise Connectedness of Complex Spaces [177]--
1. Local Connectedness - 2. Arcwise Connectedness - 3. Finite Holomorphic Surjections and Covering Maps--
§ 4. Removable Singularities of Analytic Sets [180]--
1. Analyticity of Closures of Coverings - 2. Extension Theorem for Analytic Sets ---
3. Proof of Proposition 2-4. Historical Note--
§3. Theorem of Primitive Element [137]--
1. Theorem of Integral Dependence - 2. A Lemma about Holomorphic Determinants. Discriminants - 3. Theorem of Primitive Element. Universal Denominators - 4. The Sheaf Monomorphism--
§4. Applications of the Theorem of Primitive Element [143]--
1. Riemann Extension Theorem on Locally Pure Dimensional Complex Spaces ---
2. Characterization of Normality by the Riemann Extension Theorem - 3. Weier-straB Convergence Theorem on Locally Pure Dimensional Complex Spaces--
§5. Analytically Normal Vector Bundles [146]--
1. General Remarks - 2. Decent Vector Bundles - 3. Analytically Normal Vector Bundles and Normal Cones - 4. Whitney Sums of Analytically Normal Bundles ---
5. Discussion of the Cones Akm--
Chapter 8. Normalization of Complex Spaces [152]--
§ 1. One-Sheeted Analytic Coverings [152]--
1. Examples - 2. General Structure of One-Sheeted Coverings - 3. The Isomorphisms t>: and 6:--
§ 2. The Local Existence Theorem. Coherence of the Normalization Sheaf [156]--
1. Admissible Sheaves and the Local Existence Theorem - 2. Proof of the Local Existence Theorem - 3. Coherence of the Normalization Sheaf--
§3. The Global Existence Theorem. Existence of Normalization Spaces 159 1. Linking Isomorphisms - 2. The Global Existence Theorem - 3. Existence of a Normalization--
§4. Properties of the Normalization [162]--
1. The Space of Prime Germs. Topological Structure of Normalization Spaces ---
2. Uniqueness of the Normalization - 3. Lifting of Holomorphic Maps - 4. Injective Holomorphic Maps--
Chapter 9. Irreducibility and Connectivity. Extension of Analytic Sets [167]--
§ 1. Irreducible Complex Spaces [167]--
1. Identity Lemma - 2. Irreducible Complex Spaces - 3. Properties of Irreducible Complex Spaces--
§2. Global Decomposition of Complex Spaces [171]--
1. Connected Components - 2. Global Decomposition Theorem - 3. Global and Local Decomposition. Global Maximum Principle - 4. Proper Maps - 5. Holomorphically Spreadable Spaces--
§3. Local and Arcwise Connectedness of Complex Spaces [177]--
1. Local Connectedness - 2. Arcwise Connectedness - 3. Finite Holomorphic Surjections and Covering Maps--
§ 4. Removable Singularities of Analytic Sets [180]--
1. Analyticity of Closures of Coverings - 2. Extension Theorem for Analytic Sets ---
3. Proof of Proposition 2-4. Historical Note--
§3. Theorem of Primitive Element [137]--
1. Theorem of Integral Dependence - 2. A Lemma about Holomorphic Determinants. Discriminants - 3. Theorem of Primitive Element. Universal Denominators - 4. The Sheaf Monomorphism--
§4. Applications of the Theorem of Primitive Element [143]--
1. Riemann Extension Theorem on Locally Pure Dimensional Complex Spaces ---
2. Characterization of Normality by the Riemann Extension Theorem - 3. Weier-straB Convergence Theorem on Locally Pure Dimensional Complex Spaces--
§5. Analytically Normal Vector Bundles [146]--
1. General Remarks - 2. Decent Vector Bundles - 3. Analytically Normal Vector Bundles and Normal Cones - 4. Whitney Sums of Analytically Normal Bundles ---
5. Discussion of the Cones Akm--
Chapter 8. Normalization of Complex Spaces [152]--
§ 1. One-Sheeted Analytic Coverings [152]--
1. Examples - 2. General Structure of One-Sheeted Coverings - 3. The Isomorphisms t>: and 6:--
§ 2. The Local Existence Theorem. Coherence of the Normalization Sheaf [156]--
1. Admissible Sheaves and the Local Existence Theorem - 2. Proof of the Local Existence Theorem - 3. Coherence of the Normalization Sheaf--
§3. The Global Existence Theorem. Existence of Normalization Spaces 159 1. Linking Isomorphisms - 2. The Global Existence Theorem - 3. Existence of a Normalization--
§4. Properties of the Normalization [162]--
1. The Space of Prime Germs. Topological Structure of Normalization Spaces ---
2. Uniqueness of the Normalization - 3. Lifting of Holomorphic Maps - 4. Injective Holomorphic Maps--
Chapter 9. Irreducibility and Connectivity. Extension of Analytic Sets [167]--
§ 1. Irreducible Complex Spaces [167]--
1. Identity Lemma - 2. Irreducible Complex Spaces - 3. Properties of Irreducible Complex Spaces--
§2. Global Decomposition of Complex Spaces [171]--
1. Connected Components - 2. Global Decomposition Theorem - 3. Global and Local Decomposition. Global Maximum Principle - 4. Proper Maps - 5. Holomorphically Spreadable Spaces--
§3. Local and Arcwise Connectedness of Complex Spaces [177]--
1. Local Connectedness - 2. Arcwise Connectedness - 3. Finite Holomorphic Surjections and Covering Maps--
§ 4. Removable Singularities of Analytic Sets [180]--
1. Analyticity of Closures of Coverings - 2. Extension Theorem for Analytic Sets ---
3. Proof of Proposition 2-4. Historical Note--
5. Theorems of Chow, Levi and Hurwitz-Weierstrass [184]--
I. Theorem of Chow - 2. Levi Extension Theorem - 3. Theorem of Hurwitz-Weier-straB - 4. Historical Notes--
Chapter 10. Direct Image Theorem [188]--
§1. Polydisc Modules [188]--
1. The Protonorm System on (P(£) - 2. Polydisc Modules - 3. Morphisms and Morphism Systems - 4. Complexes of Polydisc Modules - 5. Cohomology of Polydisc Modules. Quasi-Isomorphisms - 6. Finiteness Lemma F(q) and Projection Lemma Z(q) for Cocycles--
§2. Proof of Lemmata F(q) and Z(q) [194]--
1. Homotopy - 2. Z(F(g —1) begin - 4. Smoothing ---
5. Construction of L’_1, co - 6. Basic Property of co - 7. Vanishing of--
§3. Sheaves of Polydisc Modules [199]--
1. Definitions for UeE - 2. The Natural Functor - 3. The Paragraphs 1.4-1.6--
for Polydisc Sheaves - 4. Coherence of Cohomology Sheaves. Main Theorem--
§ 4. Coherence of Direct Image Sheaves [202]--
1. Mounting Complex Spaces - 2. Resolutions - 3. Complexes of Polydisc Modules--
- 4. Complexes of Sheaves - 5. Application of the Main Theorem - 6. The Direct Image Theorem--
§ 5. Regular Families of Compact Complex Manifolds [207]--
1. Regular Families - 2. Complex Subspaces FcY of Codimension 1 - 3. The Maps / i - 4. Upper Semi-Continuity - 5. The Case dimcH'(X,y),) = constant - 6. Rigid Complex Manifolds--
§6. Stein Factorization and Applications [212]--
1. Stein Factorization of Proper Holomorphic Maps - 2. Proper Modifications of Normal Complex Spaces - 3. Graph of a Finite System of Meromorphic Functions--
- 4. Analytic and Algebraic dependence - 5. Base Space of a Finite System of Meromorphic Functions - 6. Properties of Base Spaces - 7. Analytic Closures and Structure of the Field . /Z( X) - 8. Reduction Theorem for Holomorphically Convex Spaces--
Annex. Theory of Sheaves. Notion of Coherence [223]--
§0. Sheaves [223]--
1. Sheaves and Morphisms - 2. Restrictions, Subsheaves and Sums of Sheaves ---
3. Sections. Hausdorff Sheaves--
§ 1. Construction of Sheaves from Presheaves [225]--
1. Presheaves - 2. The Sheaf Associated to a Preshaf - 3. Canonical Presheaves ---
4. Image Sheaves--
§ 2. Sheaves and Presheaves with Algebraic Structure [228]--
1. Sheaves of Groups, Rings and ^/-Modules - 2. The Category of ^/-Modules. Quotient Sheaves - 3. Presheaves with Algebraic Structure - 4. The Functor ---
5. The Functor--
§3. Coherent Sheaves [232]--
1. Sheaves of Finite Type - 2. Sheaves of Relation Finite Type - 3. Coherent--
Sheaves--
§ 4. Yoga of Coherent Sheaves [236]--
1. Three Lemma - 2. Consequences of the Three Lemma - 3. Coherence of Trivial Extensions - 4. Coherence of the Functors Jfom and ® - 5. Annihilator Sheaves--
Bibliography [242]--
Index of Names [244]--
Index [245]--
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 32 G774c (Browse shelf) Available A-9398

Includes indexes.

Bibliografía: p. [242]-243.

Chapter 1. Complex Spaces [1] -- --
§1. The Notion of a Complex Space [1] -- --
0. Ringed Spaces - 1. The Space ((0", 0) - 2. Zero Sets and Complex Model Spaces - -- --
3. Sheaves of Local (D-Algebras. (E-ringed Spaces - 4. Morphisms of (T-ringed Spaces - 5. Complex Spaces - 6. Sections and Functions - 7. Construction of Complex Spaces by Gluing - 8. The Complex Projective Space IF}, - 9. Historical Notes -- --
§2. General Properties of Complex Spaces [13] -- --
1. Zero Sets of Ideal Sheaves - 2. Closed Complex Subspaces - 3. Factorization of Holomorphic Maps - 4. Complex Spaces and Coherent Analytic Sheaves. Extension Principle - 5. Analytic Image Sheaves - 6. Analytic Inverse Image Sheaves -7. Holomorphic Embeddings -- --
§ 3. Direct Products and Graphs [22] -- --
1. The Bijection Extension of Holomorphic Maps - 2. Complex -- --
Direct Products - 3. Existence of Canonical Products. Local Case - 4. Existence of Canonical Products. Global Case - 5. Graph Space of a Holomorphic Map -- --
§ 4. Complex Spaces and Cohomology 3q -- --
1. Divisors - 2. Holomorphic Vector Bundles - 3. Line Bundles and Divisors - -- --
4. Holomorphically Convex Spaces and Stein Spaces - 5. Cech Cohomology of Analytic Sheaves - 6. Cohomology of Coherent Sheaves with Respect to Stein Coverings - 7. Higher Dimensional Direct Images -- --
Chapter 2. Local Weierstrass Theory [38] -- --
§ 1. The Weierstrass Theorems 3g 0. Generalities - 1. The WeierstraB Division Theorem - 2. The WeierstraB Preparation Theorem - 3. A Simple Observation -- --
§ 2. Algebraic Structure of 0^, 0 43 1. Noether Property and Factoriality - 2. Hensel’s Lemma - 3. Closedness of Submodules -- --
§ 3. Finite Maps 45 1. Closed Maps - 2. Finite Maps. Local Description - 3. Local Representation of Image Sheaves - 4. Exactness of the Functor for Finite Maps - 5. WeierstraB Maps -- --
§4. The Weierstrass Isomorphism [53] -- --
1. The Generalized WeierstraB Division Theorem - 2. The WeierstraB Isomorphism -3. A Coherence Lemma - 4. A Further Generalization of the Generalized WeierstraB Division Theorem -- --
§ 5. Coherence of Structure Sheaves 57 1. Formal Coherence Criterion - 2. The Coherence of 0^ - 3. Coherence of all Structure Sheaves 0x -- --
Chapter 3. Finite Holomorphic Maps [61] -- --
§ 1. Finite Mapping Theorem 61 | -- --
1. Projection Lemma - 2. Finite Holomorphic Maps and Isolated Points - 3. Finite Mapping Theorem -- --
§2. Ruckert Nullstellensatz for Coherent Sheaves [66] -- --
1. Preliminary Version - 2. Ruckert Nullstellensatz -- --
§ 3. Finite Open Holomorphic Maps 0 67 I 1. A Necessary Condition for Openness - 2. Torsion Sheaves and Criterion of Openness - 3. Coherence of Torsion Sheaves and Open Mapping Lemma - 4. Existence of Finite Open Projections -- --
§ 4. Local Description of Complex Subspaces in C" [72] -- --
1. The Local Description Lemma - 2. Proof of the Local Description Lemma -- --
Chapter 4. Analytic Sets. Coherence of Ideal Sheaves [75] -- --
§ 1. Analytic Sets and their Ideal Sheaves [75] -- --
1. Analytic Sets - 2. Ideal Sheaf of an Analytic Set - 3. Local Decomposition Lemma - 4. Prime Components. Criterion of Reducibility - 5. Ruckert Nullstellensatz for Ideal Sheaves - 6. Analytic Sets and Finite Holomorphic Maps -- --
§2. Coherence of the Sheaves <(A) [84] -- --
1. Proof of Coherence in a Special Case - 2. Reduction to Analytic Sets in Domains of §3. Applications of the Fundamental Theorem and of the Nullstellensatz [87] -- --
1. Analytic Sets and Reduced Closed Complex Subspaces - 2. Reduction of Complex Spaces - 3. Reduced Complex Spaces -- --
§4. Coherent and Locally Free Sheaves [90] -- --
1. Corank of a Coherent Sheaf - 2. Characterization of Locally Free Sheaves -- --
Chapter 5. Dimension Theory [93] -- --
§ 1. Analytic and Algebraic Dimension 93 1. Analytic Dimension of Complex Spaces. Upper Semi-Continuity - 2. Analytic and Algebraic Dimension - 3. Dimension of the Reduction and of Analytic Sets -- --
§ 2. Active Germs and the Active Lemma [97] -- --
l. The Sheaf of Active Germs - 2. Criterion of Activity - 3. Existence of Active Functions. Lifting Lemma - 4. Active Lemma -- --
§3. Applications of the Active Lemma [101] -- --
1. Basic Properties of Dimension. Ritt’s Lemma - 2. Analytic Sets of Maximal Dimension - 3. Computation of the Dimension of Analytic Sets in §4. Dimension and Finite Maps. Pure Dimensional Spaces [105] -- --
1. Invariance of Dimension under Finite Maps - 2. Pure Dimensional Complex Spaces - 3. Open Finite Maps and Dimension. Open Mapping Theorem - 4. Local Prime Components (revisited) -- --
§5. Maximum Principle [108] -- --
1. Open Mapping Theorem for Holomorphic Functions - 2. Local and Absolute Maximum Principle - 3. Maximum Principle for Complex Spaces with Boundary -- --
§6. Noether Lemma for Coherent Analytic Sheaves [110] -- --
1. Statement of the Lemma and Applications - 2. Proof of the Lemma -- --
Chapter 6. Analyticity of the Singular Locus. Normalization of the Struc-ture Sheaf [113] -- --
§1. Embedding Dimension [113] -- --
1. Embedding Dimension. Jacobi Criterion - 2. Analyticity of the Sets X(k). Algebraic Description of emb* X -- --
§ 2. Smooth Points and the Singular Locus [115] -- --
1. Smooth Points and Singular Locus - 2. Analyticity of the Singular Locus - 3. A Property of the Ideals «'(S(X))*, xeS(X) -- --
§ 3. The Sheaf of Germs of Meromorphic Functions [119] -- --
1. The Sheaf Jf — 2. The Zero Set and the Polar Set of a Meromorphic Function -3. The Lifting Monomorphism -- --
§4. The Normalization Sheaf [123] -- --
1. The Normalization Sheaf Normal Points - 2. Normality and Irreducibility at a Point -- --
§5. Criterion of Normality. Theorem of Oka [125] -- --
1. The Canonical ©^.-homomorphism .^-2. Criterion of Nor- -- --
mality. Theorem of Oka - 3. Singular Locus and Normal Points -- --
Chapter 7. Riemann Extension Theorem and Analytic Coverings [130] -- --
§1. Riemann Extension Theorem on Complex Manifolds [130] -- --
l. First Riemann Theorem - 2. Second Riemann Theorem - 3. Riemann Extension Theorem on Complex Manifolds. Criterion of Connectedness -- --
§2. Analytic Coverings . 133 1. Definition and Elementary Properties - 2. Covering Lemma and Existence of Open Coverings - 3. Open Analytic Coverings -- --
§3. Theorem of Primitive Element [137] -- --
1. Theorem of Integral Dependence - 2. A Lemma about Holomorphic Determinants. Discriminants - 3. Theorem of Primitive Element. Universal Denominators - 4. The Sheaf Monomorphism -- --
§4. Applications of the Theorem of Primitive Element [143] -- --
1. Riemann Extension Theorem on Locally Pure Dimensional Complex Spaces - -- --
2. Characterization of Normality by the Riemann Extension Theorem - 3. Weier-straB Convergence Theorem on Locally Pure Dimensional Complex Spaces -- --
§5. Analytically Normal Vector Bundles [146] -- --
1. General Remarks - 2. Decent Vector Bundles - 3. Analytically Normal Vector Bundles and Normal Cones - 4. Whitney Sums of Analytically Normal Bundles - -- --
5. Discussion of the Cones Akm -- --
Chapter 8. Normalization of Complex Spaces [152] -- --
§ 1. One-Sheeted Analytic Coverings [152] -- --
1. Examples - 2. General Structure of One-Sheeted Coverings - 3. The Isomorphisms t>: and 6: -- --
§ 2. The Local Existence Theorem. Coherence of the Normalization Sheaf [156] -- --
1. Admissible Sheaves and the Local Existence Theorem - 2. Proof of the Local Existence Theorem - 3. Coherence of the Normalization Sheaf -- --
§3. The Global Existence Theorem. Existence of Normalization Spaces 159 1. Linking Isomorphisms - 2. The Global Existence Theorem - 3. Existence of a Normalization -- --
§4. Properties of the Normalization [162] -- --
1. The Space of Prime Germs. Topological Structure of Normalization Spaces - -- --
2. Uniqueness of the Normalization - 3. Lifting of Holomorphic Maps - 4. Injective Holomorphic Maps -- --
Chapter 9. Irreducibility and Connectivity. Extension of Analytic Sets [167] -- --
§ 1. Irreducible Complex Spaces [167] -- --
1. Identity Lemma - 2. Irreducible Complex Spaces - 3. Properties of Irreducible Complex Spaces -- --
§2. Global Decomposition of Complex Spaces [171] -- --
1. Connected Components - 2. Global Decomposition Theorem - 3. Global and Local Decomposition. Global Maximum Principle - 4. Proper Maps - 5. Holomorphically Spreadable Spaces -- --
§3. Local and Arcwise Connectedness of Complex Spaces [177] -- --
1. Local Connectedness - 2. Arcwise Connectedness - 3. Finite Holomorphic Surjections and Covering Maps -- --
§ 4. Removable Singularities of Analytic Sets [180] -- --
1. Analyticity of Closures of Coverings - 2. Extension Theorem for Analytic Sets - -- --
3. Proof of Proposition 2-4. Historical Note -- --
§3. Theorem of Primitive Element [137] -- --
1. Theorem of Integral Dependence - 2. A Lemma about Holomorphic Determinants. Discriminants - 3. Theorem of Primitive Element. Universal Denominators - 4. The Sheaf Monomorphism -- --
§4. Applications of the Theorem of Primitive Element [143] -- --
1. Riemann Extension Theorem on Locally Pure Dimensional Complex Spaces - -- --
2. Characterization of Normality by the Riemann Extension Theorem - 3. Weier-straB Convergence Theorem on Locally Pure Dimensional Complex Spaces -- --
§5. Analytically Normal Vector Bundles [146] -- --
1. General Remarks - 2. Decent Vector Bundles - 3. Analytically Normal Vector Bundles and Normal Cones - 4. Whitney Sums of Analytically Normal Bundles - -- --
5. Discussion of the Cones Akm -- --
Chapter 8. Normalization of Complex Spaces [152] -- --
§ 1. One-Sheeted Analytic Coverings [152] -- --
1. Examples - 2. General Structure of One-Sheeted Coverings - 3. The Isomorphisms t>: and 6: -- --
§ 2. The Local Existence Theorem. Coherence of the Normalization Sheaf [156] -- --
1. Admissible Sheaves and the Local Existence Theorem - 2. Proof of the Local Existence Theorem - 3. Coherence of the Normalization Sheaf -- --
§3. The Global Existence Theorem. Existence of Normalization Spaces 159 1. Linking Isomorphisms - 2. The Global Existence Theorem - 3. Existence of a Normalization -- --
§4. Properties of the Normalization [162] -- --
1. The Space of Prime Germs. Topological Structure of Normalization Spaces - -- --
2. Uniqueness of the Normalization - 3. Lifting of Holomorphic Maps - 4. Injective Holomorphic Maps -- --
Chapter 9. Irreducibility and Connectivity. Extension of Analytic Sets [167] -- --
§ 1. Irreducible Complex Spaces [167] -- --
1. Identity Lemma - 2. Irreducible Complex Spaces - 3. Properties of Irreducible Complex Spaces -- --
§2. Global Decomposition of Complex Spaces [171] -- --
1. Connected Components - 2. Global Decomposition Theorem - 3. Global and Local Decomposition. Global Maximum Principle - 4. Proper Maps - 5. Holomorphically Spreadable Spaces -- --
§3. Local and Arcwise Connectedness of Complex Spaces [177] -- --
1. Local Connectedness - 2. Arcwise Connectedness - 3. Finite Holomorphic Surjections and Covering Maps -- --
§ 4. Removable Singularities of Analytic Sets [180] -- --
1. Analyticity of Closures of Coverings - 2. Extension Theorem for Analytic Sets - -- --
3. Proof of Proposition 2-4. Historical Note -- --
§3. Theorem of Primitive Element [137] -- --
1. Theorem of Integral Dependence - 2. A Lemma about Holomorphic Determinants. Discriminants - 3. Theorem of Primitive Element. Universal Denominators - 4. The Sheaf Monomorphism -- --
§4. Applications of the Theorem of Primitive Element [143] -- --
1. Riemann Extension Theorem on Locally Pure Dimensional Complex Spaces - -- --
2. Characterization of Normality by the Riemann Extension Theorem - 3. Weier-straB Convergence Theorem on Locally Pure Dimensional Complex Spaces -- --
§5. Analytically Normal Vector Bundles [146] -- --
1. General Remarks - 2. Decent Vector Bundles - 3. Analytically Normal Vector Bundles and Normal Cones - 4. Whitney Sums of Analytically Normal Bundles - -- --
5. Discussion of the Cones Akm -- --
Chapter 8. Normalization of Complex Spaces [152] -- --
§ 1. One-Sheeted Analytic Coverings [152] -- --
1. Examples - 2. General Structure of One-Sheeted Coverings - 3. The Isomorphisms t>: and 6: -- --
§ 2. The Local Existence Theorem. Coherence of the Normalization Sheaf [156] -- --
1. Admissible Sheaves and the Local Existence Theorem - 2. Proof of the Local Existence Theorem - 3. Coherence of the Normalization Sheaf -- --
§3. The Global Existence Theorem. Existence of Normalization Spaces 159 1. Linking Isomorphisms - 2. The Global Existence Theorem - 3. Existence of a Normalization -- --
§4. Properties of the Normalization [162] -- --
1. The Space of Prime Germs. Topological Structure of Normalization Spaces - -- --
2. Uniqueness of the Normalization - 3. Lifting of Holomorphic Maps - 4. Injective Holomorphic Maps -- --
Chapter 9. Irreducibility and Connectivity. Extension of Analytic Sets [167] -- --
§ 1. Irreducible Complex Spaces [167] -- --
1. Identity Lemma - 2. Irreducible Complex Spaces - 3. Properties of Irreducible Complex Spaces -- --
§2. Global Decomposition of Complex Spaces [171] -- --
1. Connected Components - 2. Global Decomposition Theorem - 3. Global and Local Decomposition. Global Maximum Principle - 4. Proper Maps - 5. Holomorphically Spreadable Spaces -- --
§3. Local and Arcwise Connectedness of Complex Spaces [177] -- --
1. Local Connectedness - 2. Arcwise Connectedness - 3. Finite Holomorphic Surjections and Covering Maps -- --
§ 4. Removable Singularities of Analytic Sets [180] -- --
1. Analyticity of Closures of Coverings - 2. Extension Theorem for Analytic Sets - -- --
3. Proof of Proposition 2-4. Historical Note -- --
5. Theorems of Chow, Levi and Hurwitz-Weierstrass [184] -- --
I. Theorem of Chow - 2. Levi Extension Theorem - 3. Theorem of Hurwitz-Weier-straB - 4. Historical Notes -- --
Chapter 10. Direct Image Theorem [188] -- --
§1. Polydisc Modules [188] -- --
1. The Protonorm System on (P(£) - 2. Polydisc Modules - 3. Morphisms and Morphism Systems - 4. Complexes of Polydisc Modules - 5. Cohomology of Polydisc Modules. Quasi-Isomorphisms - 6. Finiteness Lemma F(q) and Projection Lemma Z(q) for Cocycles -- --
§2. Proof of Lemmata F(q) and Z(q) [194] -- --
1. Homotopy - 2. Z(F(g —1) begin - 4. Smoothing - -- --
5. Construction of L’_1, co - 6. Basic Property of co - 7. Vanishing of -- --
§3. Sheaves of Polydisc Modules [199] -- --
1. Definitions for UeE - 2. The Natural Functor - 3. The Paragraphs 1.4-1.6 -- --
for Polydisc Sheaves - 4. Coherence of Cohomology Sheaves. Main Theorem -- --
§ 4. Coherence of Direct Image Sheaves [202] -- --
1. Mounting Complex Spaces - 2. Resolutions - 3. Complexes of Polydisc Modules -- --
- 4. Complexes of Sheaves - 5. Application of the Main Theorem - 6. The Direct Image Theorem -- --
§ 5. Regular Families of Compact Complex Manifolds [207] -- --
1. Regular Families - 2. Complex Subspaces FcY of Codimension 1 - 3. The Maps / i - 4. Upper Semi-Continuity - 5. The Case dimcH'(X,y),) = constant - 6. Rigid Complex Manifolds -- --
§6. Stein Factorization and Applications [212] -- --
1. Stein Factorization of Proper Holomorphic Maps - 2. Proper Modifications of Normal Complex Spaces - 3. Graph of a Finite System of Meromorphic Functions -- --
- 4. Analytic and Algebraic dependence - 5. Base Space of a Finite System of Meromorphic Functions - 6. Properties of Base Spaces - 7. Analytic Closures and Structure of the Field . /Z( X) - 8. Reduction Theorem for Holomorphically Convex Spaces -- --
Annex. Theory of Sheaves. Notion of Coherence [223] -- --
§0. Sheaves [223] -- --
1. Sheaves and Morphisms - 2. Restrictions, Subsheaves and Sums of Sheaves - -- --
3. Sections. Hausdorff Sheaves -- --
§ 1. Construction of Sheaves from Presheaves [225] -- --
1. Presheaves - 2. The Sheaf Associated to a Preshaf - 3. Canonical Presheaves - -- --
4. Image Sheaves -- --
§ 2. Sheaves and Presheaves with Algebraic Structure [228] -- --
1. Sheaves of Groups, Rings and ^/-Modules - 2. The Category of ^/-Modules. Quotient Sheaves - 3. Presheaves with Algebraic Structure - 4. The Functor - -- --
5. The Functor -- --
§3. Coherent Sheaves [232] -- --
1. Sheaves of Finite Type - 2. Sheaves of Relation Finite Type - 3. Coherent -- --
Sheaves -- --
§ 4. Yoga of Coherent Sheaves [236] -- --
1. Three Lemma - 2. Consequences of the Three Lemma - 3. Coherence of Trivial Extensions - 4. Coherence of the Functors Jfom and ® - 5. Annihilator Sheaves -- --
Bibliography [242] -- --
Index of Names [244] -- --
Index [245] -- --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha