Differential analysis on complex manifolds / R. O. Wells, Jr.

Por: Wells, R. O., Jr. (Raymond O'Neil), 1940-Series Graduate texts in mathematics ; 65Editor: New York : Springer-Verlag, c1980Descripción: x, 260 p. ; 25 cmISBN: 0387904190Tema(s): Complex manifolds | Differentiable manifoldsOtra clasificación: 58-01 (32-01)
Contenidos:
Chapter I Manifolds and Vector Bundles [1] --
1. Manifolds [2] --
2. Vector Bundles [12] --
3. Almost Complex Manifolds and the 5-Operatot [27] --
Chapter II Sheaf Theory [36] --
1. Presheaves and Sheaves [36] --
2. Resolutions of Sheaves [42] --
3. Cohomology Theory SI --
Appendix A. Cech Cohomology with Coefficients in a Sheaf [63] --
Chapter III Differential Geometry [65] --
1. Hermitian Differential Geometry [65] --
2. The Canonical Connection and Curvature of a Hermitian Holomorphic Vector Bundle [77] --
3. Chem Classes of Differentiable Vector Bundles [84] --
4. Complex Line Bundies [97] --
Chapter IV Elliptic Operator Theory [108] --
1. Sobolev Spaces [108] --
2. Differential Operators [113] --
3. Pseudodifferential Operators [119] --
4. A Parametrix for Elliptic Differential Operators [136] --
5. Elliptic Complexes [144] --
Chapter V Compact Complex Manifolds [154] --
1. Hermitian Exterior Algebra on a Hermitian Vector Space [154] --
2. Harmonic Theory on Compact Manifolds [163] --
3. Representations of 61(2, C) on Hermitian Exterior Algebras [170] --
4. Differential Operators on a Kahler Manifold [188] --
5. The Hodge Decomposition Theorem on Compact Kahler Manifolds [197] --
6. The Hodge-Riemann Bilinear Relations on a Kahler Manifold [201] --
Chapter VI Kodaira’s Projective Embedding Theorem [217] --
1. Hodge Manifolds [217] --
2. Kodaira’s Vanishing Theorem [222] --
3. Quadratic Transformations [229] --
4. Kodaira’s Embedding Theorem [234] --
References [241] --
Subject Index [251] --
Author Index [259] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 58 W453 (Browse shelf) Available A-9397

Includes indexes.

Bibliografía: p. 241-247.

Chapter I Manifolds and Vector Bundles [1] --
1. Manifolds [2] --
2. Vector Bundles [12] --
3. Almost Complex Manifolds and the 5-Operatot [27] --
Chapter II Sheaf Theory [36] --
1. Presheaves and Sheaves [36] --
2. Resolutions of Sheaves [42] --
3. Cohomology Theory SI --
Appendix A. Cech Cohomology with Coefficients in a Sheaf [63] --
Chapter III Differential Geometry [65] --
1. Hermitian Differential Geometry [65] --
2. The Canonical Connection and Curvature of a Hermitian Holomorphic Vector Bundle [77] --
3. Chem Classes of Differentiable Vector Bundles [84] --
4. Complex Line Bundies [97] --
Chapter IV Elliptic Operator Theory [108] --
1. Sobolev Spaces [108] --
2. Differential Operators [113] --
3. Pseudodifferential Operators [119] --
4. A Parametrix for Elliptic Differential Operators [136] --
5. Elliptic Complexes [144] --
Chapter V Compact Complex Manifolds [154] --
1. Hermitian Exterior Algebra on a Hermitian Vector Space [154] --
2. Harmonic Theory on Compact Manifolds [163] --
3. Representations of 61(2, C) on Hermitian Exterior Algebras [170] --
4. Differential Operators on a Kahler Manifold [188] --
5. The Hodge Decomposition Theorem on Compact Kahler Manifolds [197] --
6. The Hodge-Riemann Bilinear Relations on a Kahler Manifold [201] --
Chapter VI Kodaira’s Projective Embedding Theorem [217] --
1. Hodge Manifolds [217] --
2. Kodaira’s Vanishing Theorem [222] --
3. Quadratic Transformations [229] --
4. Kodaira’s Embedding Theorem [234] --
References [241] --
Subject Index [251] --
Author Index [259] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha