Algebraic integrability, Painlevé geometry and Lie algebras / Mark Adler, Pierre van Moerbeke, Pol Vanhaecke.

Por: Adler, Mark A, 1950-Colaborador(es): Moerbeke, Pierre van | Vanhaecke, Pol, 1963-Series Ergebnisse der Mathematik und ihrer Grenzgebiete: 3. Folge, Bd. 47.Editor: Berlin ; New York : Springer, c2004Descripción: xii, 483 p. : ill. ; 24 cmISBN: 354022470X (acidfree paper)Tema(s): Lie algebras | Differential equations | Geometry, Algebraic | Painlevé equationsOtra clasificación: *CODIGO* Recursos en línea: Publisher description | Table of contents only
Contenidos:
1 Introduction [1] --
Part I Liouville Integrable Systems --
2 Lie Algebras [7] --
2.1 Structures on Manifolds [7] --
2.1.1 Vector Fields and 1-Forms [7] --
2.1.2 Distributions and the Frobenius Theorem [11] --
2.1.3 Differential Forms and Poly vector Fields [13] --
2.1.4 Lie Derivatives [15] --
2.2 Lie Groups and Lie Algebras [16] --
2.3 Simple Lie Algebras [22] --
2.3.1 The Classification [22] --
2.3.2 Invariant Functions and Exponents [29] --
2.4 Twisted Affine Lie Algebras [33] --
3 Poisson Manifolds [41] --
3.1 Basic Definitions [43] --
3.2 Hamiltonian Mechanics [47] --
3.3 Bi-Hamiltonian Manifolds and Vector Fields [53] --
3.4 Local and Global Structure [55] --
3.5 The Lie-Poisson Structure of g* [57] --
3.6 Constructing New Poisson Manifolds from Old Ones [62] --
4 Integrable Systems on Poisson Manifolds [67] --
4.1 Functions in Involution [67] --
4.2 Liouville Integrability [73] --
4.3 The Liouville Theorem and the Action-Angle Theorem [78] --
4.4 The Adler-Kostant-Symes Theorem(s) [82] --
4.4.1 Lie Algebra Splitting [83] --
4.4.2 The AKS Theorem on 0* [84] --
4.4.3 R-Brackets and Double Lie Algebras [88] --
4.4.4 The AKS Theorem on 0 [89] --
4.5 Lax Operators and r-matrices [96] --
Part II Algebraic Completely Integrable Systems --
5 The Geometry of Abelian Varieties [107] --
5.1 Algebraic Varieties versus Complex Manifolds [107] --
5.1.1 Notations and Terminology [107] --
5.1.2 Divisors and Line Bundles [108] --
5.1.3 Projective Embeddings of Complex Manifolds [113] --
5.1.4 Riemann Surfaces and Algebraic Curves [117] --
5.2 Abelian Varieties [121] --
5.2.1 The Riemann Conditions [122] --
5.2.2 Line Bundles on Abelian Varieties and Theta Functions [125] --
5.2.3 Jacobian Varieties [129] --
5.2.4 Prym Varieties [135] --
5.2.5 Families of Abelian Varieties [139] --
5.3 Divisors in Abelian Varieties [141] --
5.3.1 The Case of Non-singular Divisors [143] --
5.3.2 The Case of Singular Divisors [146] --
6 A.c.i. Systems [153] --
6.1 Definitions and First Examples [154] --
6.2 Necessary Conditions for Algebraic Complete Integrability [164] --
6.2.1 The Kowalevski-Painlevé Criterion [164] --
6.2.2 The Lyapunov Criterion [176] --
6.3 The Complex Liouville Theorem [180] --
6.4 Lax Equations with a Parameter [184] --
7 Weight Homogeneous A.c.i. Systems [199] --
7.1 Weight Homogeneous Vector Fields and Laurent Solutions [200] --
7.2 Convergence of the Balances [213] --
7.3 Weight Homogeneous Constants of Motion [215] --
7.4 The Kowalevski Matrix and its Spectrum [218] --
7.5 Weight Homogeneous A.c.i. Systems [226] --
7.6 Algorithms [229] --
7.6.1 The Indicial Locus I and the Kowalevski Matrix K, [229] --
7.6.2 The Principal Balances (for all Vector Fields) [230] --
7.6.3 The Constants of Motion [234] --
7.6.4 The Abstract Painlevé Divisors [236] --
7.6.5 Embedding the Tori T [238] --
7.6.6 The Quadratic Differential Equations [240] --
7.6.7 The Holomorphic Differentials on D [242] --
7.7 Proving Algebraic Complete Integrability [245] --
7.7.1 Embedding the Tori Tand Adjunction [247] --
7.7.2 Extending One of the Vector Fields [252] --
7.7.3 Going into the Affine 25410 Integrable Spinning Tbps [419] --
Part III Examples --
8 Integrable Geodesic Flow on SO(4) [265] --
8.1 Geodesic Flow on SO(4) [265] --
8.1.1 FYom Geodesic Flow on G to a Hamiltonian Flow on g [265] --
8.1.2 Half-diagonal Metrics on so(4) [267] --
8.1.3 The Kowalevski-Painlev6 Criterion [270] --
8.2 Geodesic Flow for the Manakov Metric [289] --
8.2.1 From Metric I to the Manakov Metric [289] --
8.2.2 A Curve of Rank Three Quadrics [293] --
8.2.3 A Normal Form for the Manakov Metric [295] --
8.2.4 Algebraic Complete Integrability of the Manakov Metric [297] --
8.2.5 The Invariant Manifolds as Prym Varieties [308] --
8.2.6 A.c.i. Diagonal Metrics on so(4) [315] --
8.2.7 From the Manakov Flow to the Clebsch Flow [318] --
8.3 Geodesic Flow for Metric II and Hyper elliptic Jacobians [321] --
8.3.1 A Normal Form for Metric II [321] --
8.3.2 Algebraic Complete Integrability [325] --
8.3.3 A Lax Equation for Metric II [334] --
8.3.4 From Metric II to the Lyapunov-Steklov Flow [337] --
8.4 Geodesic Flow for Metric III and Abelian Surfaces of Type (1,6) [339] --
8.4.1 A Normal Form for Metric III [339] --
8.4.2 A Lax Equation for Metric III [342] --
8.4.3 Algebraic Complete Integrability [344] --
9 Periodic Toda Lattices Associated to Cartan Matrices [361] --
9.1 Different Forms of the Periodic Toda Lattice [361] --
9.2 The Kowalevski-Painlevé Criterion [365] --
9.3 A Lax Equation for the Periodic Toda Lattice [371] --
9.4 Algebraic Integrability of the Toda Lattice [376] --
9.5 The Geometry of the Periodic Toda Lattices [386] --
9.5.1 Notation [386] --
9.5.2 The Balances of the Periodic Toda Lattice [389] --
9.5.3 Equivalence of Painlevé Divisors [394] --
9.5.4 Behavior of the Principal Balances Near the Lower Ones [398] --
9.5.5 Tangency of the Toda Flows to the Painlev Divisors [403] --
9.5.6 Intersection Multiplicity of Two Painlevé Divisors [409] --
9.5.7 Toda Lattices Leading to Abelian Surfaces [412] --
9.5.8 Intersection Multiplicity of Many Painlevé Divisors [416] --
10.1 Spinning Tbps --
10.1.1 Equations of Motion and Poisson Structure [419] --
10.1.2 A.c.i. Tbps [424] --
10.2 The Euler-Poinsot and Lagrange Tbps [428] --
10.2.1 The Euler-Poinsot Tbp [428] --
10.2.2 The Lagrange Tbp [433] --
10.3 The Kowalevski Tbp [436] --
10.3.1 Liouville Integrability and Lax Equation [435] --
10.3.2 Algebraic Complete Integrability [443] --
10.4 The Goryachev-Chaplygin Tbp [453] --
10.4.1 Liouville Integrability and Lax Equation [453] --
10.4.2 The Bechlivanidis-van Moerbeke System [455] --
10.4.3 Almost Algebraic Complete Integrability [455] --
10.4.4 The Relation Between the Toda and the Bechlivanidis-van Moerbeke System [466] --
References [469] --
lndex [479] -
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 37 Ad237 (Browse shelf) Available A-9396

Includes bibliographical references (p. [469]-478) and index.

1 Introduction [1] --
Part I Liouville Integrable Systems --
2 Lie Algebras [7] --
2.1 Structures on Manifolds [7] --
2.1.1 Vector Fields and 1-Forms [7] --
2.1.2 Distributions and the Frobenius Theorem [11] --
2.1.3 Differential Forms and Poly vector Fields [13] --
2.1.4 Lie Derivatives [15] --
2.2 Lie Groups and Lie Algebras [16] --
2.3 Simple Lie Algebras [22] --
2.3.1 The Classification [22] --
2.3.2 Invariant Functions and Exponents [29] --
2.4 Twisted Affine Lie Algebras [33] --
3 Poisson Manifolds [41] --
3.1 Basic Definitions [43] --
3.2 Hamiltonian Mechanics [47] --
3.3 Bi-Hamiltonian Manifolds and Vector Fields [53] --
3.4 Local and Global Structure [55] --
3.5 The Lie-Poisson Structure of g* [57] --
3.6 Constructing New Poisson Manifolds from Old Ones [62] --
4 Integrable Systems on Poisson Manifolds [67] --
4.1 Functions in Involution [67] --
4.2 Liouville Integrability [73] --
4.3 The Liouville Theorem and the Action-Angle Theorem [78] --
4.4 The Adler-Kostant-Symes Theorem(s) [82] --
4.4.1 Lie Algebra Splitting [83] --
4.4.2 The AKS Theorem on 0* [84] --
4.4.3 R-Brackets and Double Lie Algebras [88] --
4.4.4 The AKS Theorem on 0 [89] --
4.5 Lax Operators and r-matrices [96] --
Part II Algebraic Completely Integrable Systems --
5 The Geometry of Abelian Varieties [107] --
5.1 Algebraic Varieties versus Complex Manifolds [107] --
5.1.1 Notations and Terminology [107] --
5.1.2 Divisors and Line Bundles [108] --
5.1.3 Projective Embeddings of Complex Manifolds [113] --
5.1.4 Riemann Surfaces and Algebraic Curves [117] --
5.2 Abelian Varieties [121] --
5.2.1 The Riemann Conditions [122] --
5.2.2 Line Bundles on Abelian Varieties and Theta Functions [125] --
5.2.3 Jacobian Varieties [129] --
5.2.4 Prym Varieties [135] --
5.2.5 Families of Abelian Varieties [139] --
5.3 Divisors in Abelian Varieties [141] --
5.3.1 The Case of Non-singular Divisors [143] --
5.3.2 The Case of Singular Divisors [146] --
6 A.c.i. Systems [153] --
6.1 Definitions and First Examples [154] --
6.2 Necessary Conditions for Algebraic Complete Integrability [164] --
6.2.1 The Kowalevski-Painlevé Criterion [164] --
6.2.2 The Lyapunov Criterion [176] --
6.3 The Complex Liouville Theorem [180] --
6.4 Lax Equations with a Parameter [184] --
7 Weight Homogeneous A.c.i. Systems [199] --
7.1 Weight Homogeneous Vector Fields and Laurent Solutions [200] --
7.2 Convergence of the Balances [213] --
7.3 Weight Homogeneous Constants of Motion [215] --
7.4 The Kowalevski Matrix and its Spectrum [218] --
7.5 Weight Homogeneous A.c.i. Systems [226] --
7.6 Algorithms [229] --
7.6.1 The Indicial Locus I and the Kowalevski Matrix K, [229] --
7.6.2 The Principal Balances (for all Vector Fields) [230] --
7.6.3 The Constants of Motion [234] --
7.6.4 The Abstract Painlevé Divisors [236] --
7.6.5 Embedding the Tori T [238] --
7.6.6 The Quadratic Differential Equations [240] --
7.6.7 The Holomorphic Differentials on D [242] --
7.7 Proving Algebraic Complete Integrability [245] --
7.7.1 Embedding the Tori Tand Adjunction [247] --
7.7.2 Extending One of the Vector Fields [252] --
7.7.3 Going into the Affine 25410 Integrable Spinning Tbps [419] --
Part III Examples --
8 Integrable Geodesic Flow on SO(4) [265] --
8.1 Geodesic Flow on SO(4) [265] --
8.1.1 FYom Geodesic Flow on G to a Hamiltonian Flow on g [265] --
8.1.2 Half-diagonal Metrics on so(4) [267] --
8.1.3 The Kowalevski-Painlev6 Criterion [270] --
8.2 Geodesic Flow for the Manakov Metric [289] --
8.2.1 From Metric I to the Manakov Metric [289] --
8.2.2 A Curve of Rank Three Quadrics [293] --
8.2.3 A Normal Form for the Manakov Metric [295] --
8.2.4 Algebraic Complete Integrability of the Manakov Metric [297] --
8.2.5 The Invariant Manifolds as Prym Varieties [308] --
8.2.6 A.c.i. Diagonal Metrics on so(4) [315] --
8.2.7 From the Manakov Flow to the Clebsch Flow [318] --
8.3 Geodesic Flow for Metric II and Hyper elliptic Jacobians [321] --
8.3.1 A Normal Form for Metric II [321] --
8.3.2 Algebraic Complete Integrability [325] --
8.3.3 A Lax Equation for Metric II [334] --
8.3.4 From Metric II to the Lyapunov-Steklov Flow [337] --
8.4 Geodesic Flow for Metric III and Abelian Surfaces of Type (1,6) [339] --
8.4.1 A Normal Form for Metric III [339] --
8.4.2 A Lax Equation for Metric III [342] --
8.4.3 Algebraic Complete Integrability [344] --
9 Periodic Toda Lattices Associated to Cartan Matrices [361] --
9.1 Different Forms of the Periodic Toda Lattice [361] --
9.2 The Kowalevski-Painlevé Criterion [365] --
9.3 A Lax Equation for the Periodic Toda Lattice [371] --
9.4 Algebraic Integrability of the Toda Lattice [376] --
9.5 The Geometry of the Periodic Toda Lattices [386] --
9.5.1 Notation [386] --
9.5.2 The Balances of the Periodic Toda Lattice [389] --
9.5.3 Equivalence of Painlevé Divisors [394] --
9.5.4 Behavior of the Principal Balances Near the Lower Ones [398] --
9.5.5 Tangency of the Toda Flows to the Painlev Divisors [403] --
9.5.6 Intersection Multiplicity of Two Painlevé Divisors [409] --
9.5.7 Toda Lattices Leading to Abelian Surfaces [412] --
9.5.8 Intersection Multiplicity of Many Painlevé Divisors [416] --
10.1 Spinning Tbps --
10.1.1 Equations of Motion and Poisson Structure [419] --
10.1.2 A.c.i. Tbps [424] --
10.2 The Euler-Poinsot and Lagrange Tbps [428] --
10.2.1 The Euler-Poinsot Tbp [428] --
10.2.2 The Lagrange Tbp [433] --
10.3 The Kowalevski Tbp [436] --
10.3.1 Liouville Integrability and Lax Equation [435] --
10.3.2 Algebraic Complete Integrability [443] --
10.4 The Goryachev-Chaplygin Tbp [453] --
10.4.1 Liouville Integrability and Lax Equation [453] --
10.4.2 The Bechlivanidis-van Moerbeke System [455] --
10.4.3 Almost Algebraic Complete Integrability [455] --
10.4.4 The Relation Between the Toda and the Bechlivanidis-van Moerbeke System [466] --
References [469] --
lndex [479] -

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha