Metric spaces of non-positive curvature / Martin R. Bridson, André Haefliger.

Por: Bridson, Martin R, 1964-Colaborador(es): Haefliger, AndréSeries Grundlehren der mathematischen Wissenschaften, 319Editor: Berlin ; New York : Springer, c1999Descripción: xxi, 643 p. : ill. ; 24 cmISBN: 3540643249 (hardcover : alk. paper)Tema(s): Metric spaces | Geometry, DifferentialOtra clasificación: 53C23 (20F65 53C70 57M07) Recursos en línea: Publisher description | Table of contents only
Contenidos:
Introduction VII --
Part I. Geodesic Metric Spaces [1] --
1. Basic Concepts [2] --
Metric Spaces [2] --
Geodesics [4] --
Angles [8] --
The Length of a Curve [12] --
2. The Model Spaces M [15] --
Euclidean n-Space E" [15] --
The n-Sphere S" [16] --
Hyperbolic n-Space HI" [18] --
The Model Spaces M" [23] --
Alexandrov’s Lemma [24] --
The Isometry Groups Isom(M) [26] --
Approximate Midpoints [30] --
3. Length Spaces [32] --
Length Metrics [32] --
The Hopf-Rinow Theorem [35] --
Riemannian Manifolds as Metric Spaces [39] --
Length Metrics on Covering Spaces [42] --
Manifolds of Constant Curvature [45] --
4. Normed Spaces [47] --
Hilbert Spaces [47] --
Isometries of Normed Spaces [51] --
Spaces [53] --
5. Some Basic Constructions [56] --
Products [56] --
k-Cones [59] --
Spherical Joins [63] --
Quotient Metrics and Gluing [64] --
Limits of Metric Spaces [70] --
Ultralimits and Asymptotic Cones [77] --
6. More on the Geometry of M [81] --
The Klein Model for H" [81] --
The Mobius Group [84] --
The Poincaré Ball Model for H" [86] --
The Poincaré Half-Space Model for H" [90] --
Isometnes of H [91] --
M" as a Riemannian Manifold [92] --
7. Mk-Polyhedral Complexes [97] --
Metric Simplicial Complexes [97] --
Geometric Links and Cone Neighbourhoods [102] --
The Existence of Geodesics [105] --
The Main Argument [108] --
Cubical Complexes [111] --
Mk -Polyhedral Complexes [112] --
Barycentric Subdivision [115] --
More on the Geometry of Geodesics [118] --
Alternative Hypotheses [122] --
Appendix: Metrizing Abstract Simplicial Complexes [123] --
8. Group Actions and Quasi-Isometries [131] --
Group Actions on Metric Spaces [131] --
Presenting Groups of Homeomorphisms [134] --
Quasi-Isometries [138] --
Some Invariants of Quasi-Isometry [142] --
The Ends of a Space [144] --
Growth and Rigidity [148] --
Quasi-Isometries of the Model Spaces [150] --
Approximation by Metric Graphs [152] --
Appendix: Combinatorial 2-Complexes [153] --
Part II. CAT(k) Spaces [157] --
1. Definitions and Characterizations of CAT(k) Spaces [158] --
The CAT(x) Inequality [158] --
Characterizations of CAT(x) Spaces [161] --
CAT(x) Implies CAT(x') if k < k' [165] --
Simple Examples of CAT(x) Spaces [167] --
Historical Remarks [168] --
Appendix: The Curvature of Riemannian Manifolds [169] --
2. Convexity and Its Consequences [175] --
Convexity of the Metric [175] --
Convex Subspaces and Projection [176] --
The Centre of a Bounded Set [178] --
Flat Subspaces [180] --
3. Angles, Limits, Cones and Joins [184] --
Angles in CAT(/k) Spaces [184] --
4-Point Limits of CAT(/k) Spaces [186] --
Cones and Spherical Joins [188] --
The Space of Directions [190] --
4. The Cartan-Hadamard Theorem [193] --
Local-to-Global [193] --
An Exponential Map [196] --
Alexandrov’s Patchwork [199] --
Local Isometries and n't-Injectivity [200] --
Injectivity Radius and Systole [202] --
5. Polyhedral Complexes of Bounded Curvature [205] --
Characterizations of Curvature < k [206] --
Extending Geodesics [207] --
Flag Complexes [210] --
Constructions with Cubical Complexes [212] --
Two-Dimensional Complexes [215] --
Subcomplexes and Subgroups in Dimension 2 [216] --
Knot and Link Groups [220] --
From Group Presentations to Negatively Curved 2-Complexes [224] --
6. Isometries of CAT(0) Spaces [228] --
Individual Isometries [228] --
On the General Structure of Groups of Isometries [233] --
Clifford Translations and the Euclidean de Rham Factor [235] --
The Group of Isometries of a Compact Metric Space of Non-Positive Curvature [237] --
A Splitting Theorem [239] --
7. The Flat Torus Theorem [244] --
The Flat Torus Theorem [244] --
Cocompact Actions and the Solvable Subgroup Theorem [247] --
Proper Actions That Are Not Cocompact [250] --
Actions That Are Not Proper [254] --
Some Applications to Topology [254] --
8. The Boundary at Infinity of a CAT(O) Space [260] --
Asymptotic Rays and the Boundary aX [260] --
The Cone Topology on X = X U aX [263] --
Horofunctions and Busemann Functions [267] --
Characterizations of Horofunctions [271] --
Parabolic Isometries [274] --
9. The Tits Metric and Visibility Spaces [277] --
Angles in X [278] --
The Angular Metric [279] --
The Boundary (aX, Z) is a CAT(1) Space [285] --
The Tits Metric [289] --
How the Tits Metric Determines Splittings [291] --
Visibility Spaces [294] --
10. Symmetric Spaces [299] --
Real, Complex and Quatemionic Hyperbolic n-Spaces [300] --
The Curvature of KH" [304] --
The Curvature of Distinguished Subspaces of KH" [306] --
The Group of Isometries of KH" [307] --
The Boundary at Infinity and Horospheres in KH" [309] --
Horocyclic Coordinates and Parabolic Subgroups for KH" [311] --
The Symmetric Space P(n, R) [314] --
P(n, R) as a Riemannian Manifold [314] --
The Exponential Map exp: M(n, R) —► GL(n, R) [316] --
P(n, R) is a CAT(0) Space [318] --
Flats, Regular Geodesics and Weyl Chambers [320] --
The Iwasawa Decomposition of GL(n, R) [323] --
The Irreducible Symmetric space P(n, R)i [324] --
Reductive Subgroups of GL(n, R) [327] --
Semi-Simple Isometries [331] --
Parabolic Subgroups and Horospherical Decompositions of P(n, R) [332] --
The Tits Boundary of P(n, R)i is a Spherical Building [337] --
drP(n, R) in the Language of Flags and Frames [340] --
Appendix: Spherical and Euclidean Buildings --
11. Gluing Constructions [347] --
Gluing CAT(k) Spaces Along Convex Subspaces [347] --
Gluing Using Local Isometries [350] --
Equivariant Gluing [355] --
Gluing Along Subspaces that are not Locally Convex [359] --
Truncated Hyperbolic Spaces [362] --
12. Simple Complexes of Groups [367] --
Stratified Spaces [368] --
Group Actions with a Strict Fundamental Domain [372] --
Simple Complexes of Groups: Definition and Examples [375] --
The Basic Construction [381] --
Local Development and Curvature [387] --
Constructions Using Coxeter Groups [391] --
Part III. Aspects of the Geometry of Group Actions [397] --
H. Hyperbolic Spaces [398] --
1. Hyperbolic Metric Spaces [399] --
The Slim Triangles Condition [399] --
Quasi-Geodesics in Hyperbolic Spaces [400] --
k-Local Geodesics [405] --
Reformulations of the Hyperbolicity Condition [407] --
2. Area and Isoperimetric Inequalities [414] --
A Coarse Notion of Area [414] --
The Linear Isoperimetric Inequality and Hyperbolicity [417] --
Sub-Quadratic Implies Linear [422] --
More Refined Notions of Area [425] --
3. The Gromov Boundary of a S-Hyperbolic Space [427] --
The Boundary aX as a Set of Rays [427] --
The Topology on X U aX [429] --
Metrizing dX [432] --
T. Non-Positive Curvature and Group Theory [438] --
1. Isometries of CAT(O) Spaces [439] --
A Summary of What We Already Know [439] --
Decision Problems for Groups of Isometries [440] --
The Word Problem [442] --
The Conjugacy Problem [445] --
2. Hyperbolic Groups and Their Algorithmic Properties [448] --
Hyperbolic Groups [448] --
Dehn’s Algorithm [449] --
The Conjugacy Problem [451] --
Cone Types and Growth [455] --
3. Further Properties of Hyperbolic Groups [459] --
Finite Subgroups [459] --
Quasiconvexity and Centralizers [460] --
Translation Lengths [464] --
Free Subgroups [467] --
The Rips Complex [468] --
4. Semihyperbolic Groups [471] --
Definitions [471] --
Basic Properties of Semihyperbolic Groups [473] --
Subgroups of Semihyperbolic Groups [475] --
5. Subgroups of Cocompact Groups of Isometries [481] --
Finiteness Properties 48 [1] --
The Word, Conjugacy and Membership Problems [487] --
Isomorphism Problems [491] --
Distinguishing Among Non-Positively Curved [494] --
Manifolds --
6. Amalgamating Groups of Isometries [496] --
Amalgamated Free Products and HNN Extensions [497] --
Amalgamating Along Abelian Subgroups [500] --
Amalgamating Along Free Subgroups [503] --
Subgroup Distortion and the Dehn Functions of Doubles [506] --
7. Finite-Sheeted Coverings and Residual Finitenes [511] --
Residual Finiteness [511] --
Groups Without Finite Quotients [511] --
514 C. Complexes of Groups [519] --
1. Small Categories Without Loops (Scwols) [520] --
Scwols and Their Geometric Realizations [521] --
The Fundamental Group and Coverings [526] --
Group Actions on Scwols [528] --
The Local Structure of Scwols [531] --
2. Complexes of Groups [534] --
Basic Definitions [535] --
Developability [538] --
The Basic Construction [542] --
3. The Fundamental Group of a Complex of Groups [546] --
The Universal Group FG (y) [546] --
The Fundamental Group 7Ti(G(y) [546] --
A Presentation of 7Ti(G( J7) [548] --
The Universal Covering of a Developable Complex of Groups [549] --
4. Local Developments of a Complex of Groups [553] --
The Local Structure of the Geometric Realization [555] --
The Geometric Realization of the Local Development [557] --
Local Development and Curvature [562] --
The local Development as a Scwol [564] --
5. Coverings of Complexes of Groups [566] --
Definitions [566] --
The Fibres of a Covering [568] --
The Monodromy [572] --
A Appendix: Fundamental Groups and Coverings --
of Smail Categories [573] --
Basic Definitions [574] --
The Fundamental Group [576] --
Covering of a Category [579] --
The Relationship with Coverings of Complexes of Groups [583] --
g. Groupoids of local Isometries [584] --
l.Orbifolds [585] --
Basic Definitions [585] --
Coverings of Orbifolds [589] --
Orbi folds with Geometric Structures [591] --
2. Ftale Groupoids, Hosnomorphbtm and Equivalences [594] --
Etale Groupoids [594] --
Equivalences and Developability [597] --
Groupoids of Local Isometrics [601] --
Statement of the Main Theorem [603] --
3. The Fundamental Group and Coverings of Étale Groopuid [604] --
Equivalence and Homotopy of G-Paths [604] --
The Fundamental Group [607] --
Coverings [609] --
4. Proof of the Main Theorem [613] --
Outline of the Proof [613] --
Geodesics [614] --
The Space X of Geodeatcs Issuing from a Base Point [616] --
The Space X - X/G [617] --
The Covering [618] --
References [620] --
Index [637] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 53 B852 (Browse shelf) Available A-9391

Includes bibliographical references (p. 620-636) and index.

Introduction VII --
Part I. Geodesic Metric Spaces [1] --
1. Basic Concepts [2] --
Metric Spaces [2] --
Geodesics [4] --
Angles [8] --
The Length of a Curve [12] --
2. The Model Spaces M [15] --
Euclidean n-Space E" [15] --
The n-Sphere S" [16] --
Hyperbolic n-Space HI" [18] --
The Model Spaces M" [23] --
Alexandrov’s Lemma [24] --
The Isometry Groups Isom(M) [26] --
Approximate Midpoints [30] --
3. Length Spaces [32] --
Length Metrics [32] --
The Hopf-Rinow Theorem [35] --
Riemannian Manifolds as Metric Spaces [39] --
Length Metrics on Covering Spaces [42] --
Manifolds of Constant Curvature [45] --
4. Normed Spaces [47] --
Hilbert Spaces [47] --
Isometries of Normed Spaces [51] --
Spaces [53] --
5. Some Basic Constructions [56] --
Products [56] --
k-Cones [59] --
Spherical Joins [63] --
Quotient Metrics and Gluing [64] --
Limits of Metric Spaces [70] --
Ultralimits and Asymptotic Cones [77] --
6. More on the Geometry of M [81] --
The Klein Model for H" [81] --
The Mobius Group [84] --
The Poincaré Ball Model for H" [86] --
The Poincaré Half-Space Model for H" [90] --
Isometnes of H [91] --
M" as a Riemannian Manifold [92] --
7. Mk-Polyhedral Complexes [97] --
Metric Simplicial Complexes [97] --
Geometric Links and Cone Neighbourhoods [102] --
The Existence of Geodesics [105] --
The Main Argument [108] --
Cubical Complexes [111] --
Mk -Polyhedral Complexes [112] --
Barycentric Subdivision [115] --
More on the Geometry of Geodesics [118] --
Alternative Hypotheses [122] --
Appendix: Metrizing Abstract Simplicial Complexes [123] --
8. Group Actions and Quasi-Isometries [131] --
Group Actions on Metric Spaces [131] --
Presenting Groups of Homeomorphisms [134] --
Quasi-Isometries [138] --
Some Invariants of Quasi-Isometry [142] --
The Ends of a Space [144] --
Growth and Rigidity [148] --
Quasi-Isometries of the Model Spaces [150] --
Approximation by Metric Graphs [152] --
Appendix: Combinatorial 2-Complexes [153] --
Part II. CAT(k) Spaces [157] --
1. Definitions and Characterizations of CAT(k) Spaces [158] --
The CAT(x) Inequality [158] --
Characterizations of CAT(x) Spaces [161] --
CAT(x) Implies CAT(x') if k < k' [165] --
Simple Examples of CAT(x) Spaces [167] --
Historical Remarks [168] --
Appendix: The Curvature of Riemannian Manifolds [169] --
2. Convexity and Its Consequences [175] --
Convexity of the Metric [175] --
Convex Subspaces and Projection [176] --
The Centre of a Bounded Set [178] --
Flat Subspaces [180] --
3. Angles, Limits, Cones and Joins [184] --
Angles in CAT(/k) Spaces [184] --
4-Point Limits of CAT(/k) Spaces [186] --
Cones and Spherical Joins [188] --
The Space of Directions [190] --
4. The Cartan-Hadamard Theorem [193] --
Local-to-Global [193] --
An Exponential Map [196] --
Alexandrov’s Patchwork [199] --
Local Isometries and n't-Injectivity [200] --
Injectivity Radius and Systole [202] --
5. Polyhedral Complexes of Bounded Curvature [205] --
Characterizations of Curvature < k [206] --
Extending Geodesics [207] --
Flag Complexes [210] --
Constructions with Cubical Complexes [212] --
Two-Dimensional Complexes [215] --
Subcomplexes and Subgroups in Dimension 2 [216] --
Knot and Link Groups [220] --
From Group Presentations to Negatively Curved 2-Complexes [224] --
6. Isometries of CAT(0) Spaces [228] --
Individual Isometries [228] --
On the General Structure of Groups of Isometries [233] --
Clifford Translations and the Euclidean de Rham Factor [235] --
The Group of Isometries of a Compact Metric Space of Non-Positive Curvature [237] --
A Splitting Theorem [239] --
7. The Flat Torus Theorem [244] --
The Flat Torus Theorem [244] --
Cocompact Actions and the Solvable Subgroup Theorem [247] --
Proper Actions That Are Not Cocompact [250] --
Actions That Are Not Proper [254] --
Some Applications to Topology [254] --
8. The Boundary at Infinity of a CAT(O) Space [260] --
Asymptotic Rays and the Boundary aX [260] --
The Cone Topology on X = X U aX [263] --
Horofunctions and Busemann Functions [267] --
Characterizations of Horofunctions [271] --
Parabolic Isometries [274] --
9. The Tits Metric and Visibility Spaces [277] --
Angles in X [278] --
The Angular Metric [279] --
The Boundary (aX, Z) is a CAT(1) Space [285] --
The Tits Metric [289] --
How the Tits Metric Determines Splittings [291] --
Visibility Spaces [294] --
10. Symmetric Spaces [299] --
Real, Complex and Quatemionic Hyperbolic n-Spaces [300] --
The Curvature of KH" [304] --
The Curvature of Distinguished Subspaces of KH" [306] --
The Group of Isometries of KH" [307] --
The Boundary at Infinity and Horospheres in KH" [309] --
Horocyclic Coordinates and Parabolic Subgroups for KH" [311] --
The Symmetric Space P(n, R) [314] --
P(n, R) as a Riemannian Manifold [314] --
The Exponential Map exp: M(n, R) —► GL(n, R) [316] --
P(n, R) is a CAT(0) Space [318] --
Flats, Regular Geodesics and Weyl Chambers [320] --
The Iwasawa Decomposition of GL(n, R) [323] --
The Irreducible Symmetric space P(n, R)i [324] --
Reductive Subgroups of GL(n, R) [327] --
Semi-Simple Isometries [331] --
Parabolic Subgroups and Horospherical Decompositions of P(n, R) [332] --
The Tits Boundary of P(n, R)i is a Spherical Building [337] --
drP(n, R) in the Language of Flags and Frames [340] --
Appendix: Spherical and Euclidean Buildings --
11. Gluing Constructions [347] --
Gluing CAT(k) Spaces Along Convex Subspaces [347] --
Gluing Using Local Isometries [350] --
Equivariant Gluing [355] --
Gluing Along Subspaces that are not Locally Convex [359] --
Truncated Hyperbolic Spaces [362] --
12. Simple Complexes of Groups [367] --
Stratified Spaces [368] --
Group Actions with a Strict Fundamental Domain [372] --
Simple Complexes of Groups: Definition and Examples [375] --
The Basic Construction [381] --
Local Development and Curvature [387] --
Constructions Using Coxeter Groups [391] --
Part III. Aspects of the Geometry of Group Actions [397] --
H. Hyperbolic Spaces [398] --
1. Hyperbolic Metric Spaces [399] --
The Slim Triangles Condition [399] --
Quasi-Geodesics in Hyperbolic Spaces [400] --
k-Local Geodesics [405] --
Reformulations of the Hyperbolicity Condition [407] --
2. Area and Isoperimetric Inequalities [414] --
A Coarse Notion of Area [414] --
The Linear Isoperimetric Inequality and Hyperbolicity [417] --
Sub-Quadratic Implies Linear [422] --
More Refined Notions of Area [425] --
3. The Gromov Boundary of a S-Hyperbolic Space [427] --
The Boundary aX as a Set of Rays [427] --
The Topology on X U aX [429] --
Metrizing dX [432] --
T. Non-Positive Curvature and Group Theory [438] --
1. Isometries of CAT(O) Spaces [439] --
A Summary of What We Already Know [439] --
Decision Problems for Groups of Isometries [440] --
The Word Problem [442] --
The Conjugacy Problem [445] --
2. Hyperbolic Groups and Their Algorithmic Properties [448] --
Hyperbolic Groups [448] --
Dehn’s Algorithm [449] --
The Conjugacy Problem [451] --
Cone Types and Growth [455] --
3. Further Properties of Hyperbolic Groups [459] --
Finite Subgroups [459] --
Quasiconvexity and Centralizers [460] --
Translation Lengths [464] --
Free Subgroups [467] --
The Rips Complex [468] --
4. Semihyperbolic Groups [471] --
Definitions [471] --
Basic Properties of Semihyperbolic Groups [473] --
Subgroups of Semihyperbolic Groups [475] --
5. Subgroups of Cocompact Groups of Isometries [481] --
Finiteness Properties 48 [1] --
The Word, Conjugacy and Membership Problems [487] --
Isomorphism Problems [491] --
Distinguishing Among Non-Positively Curved [494] --
Manifolds --
6. Amalgamating Groups of Isometries [496] --
Amalgamated Free Products and HNN Extensions [497] --
Amalgamating Along Abelian Subgroups [500] --
Amalgamating Along Free Subgroups [503] --
Subgroup Distortion and the Dehn Functions of Doubles [506] --
7. Finite-Sheeted Coverings and Residual Finitenes [511] --
Residual Finiteness [511] --
Groups Without Finite Quotients [511] --
514 C. Complexes of Groups [519] --
1. Small Categories Without Loops (Scwols) [520] --
Scwols and Their Geometric Realizations [521] --
The Fundamental Group and Coverings [526] --
Group Actions on Scwols [528] --
The Local Structure of Scwols [531] --
2. Complexes of Groups [534] --
Basic Definitions [535] --
Developability [538] --
The Basic Construction [542] --
3. The Fundamental Group of a Complex of Groups [546] --
The Universal Group FG (y) [546] --
The Fundamental Group 7Ti(G(y) [546] --
A Presentation of 7Ti(G( J7) [548] --
The Universal Covering of a Developable Complex of Groups [549] --
4. Local Developments of a Complex of Groups [553] --
The Local Structure of the Geometric Realization [555] --
The Geometric Realization of the Local Development [557] --
Local Development and Curvature [562] --
The local Development as a Scwol [564] --
5. Coverings of Complexes of Groups [566] --
Definitions [566] --
The Fibres of a Covering [568] --
The Monodromy [572] --
A Appendix: Fundamental Groups and Coverings --
of Smail Categories [573] --
Basic Definitions [574] --
The Fundamental Group [576] --
Covering of a Category [579] --
The Relationship with Coverings of Complexes of Groups [583] --
g. Groupoids of local Isometries [584] --
l.Orbifolds [585] --
Basic Definitions [585] --
Coverings of Orbifolds [589] --
Orbi folds with Geometric Structures [591] --
2. Ftale Groupoids, Hosnomorphbtm and Equivalences [594] --
Etale Groupoids [594] --
Equivalences and Developability [597] --
Groupoids of Local Isometrics [601] --
Statement of the Main Theorem [603] --
3. The Fundamental Group and Coverings of Étale Groopuid [604] --
Equivalence and Homotopy of G-Paths [604] --
The Fundamental Group [607] --
Coverings [609] --
4. Proof of the Main Theorem [613] --
Outline of the Proof [613] --
Geodesics [614] --
The Space X of Geodeatcs Issuing from a Base Point [616] --
The Space X - X/G [617] --
The Covering [618] --
References [620] --
Index [637] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha