Lie groups / Johannes J. Duistermaat, Johan A.C. Kolk.

Por: Duistermaat, J. J. (Johannes Jisse), 1942-Colaborador(es): Kolk, Johan A. C, 1947-Series UniversitextEditor: Berlin ; New York : Springer, c2000Descripción: viii, 344 p. : ill. ; 24 cmISBN: 3540152938 (softcover)Tema(s): Lie groupsOtra clasificación: 22Exx (22-01 22C05 43-01) Recursos en línea: Publisher description | Table of contents only
Contenidos:
Preface V --
1. Lie Groups and Lie Algebras --
1.1 Lie Groups and their Lie Algebras [1] --
1.2 Examples [6] --
1.3 The Exponential Map [16] --
1.4 The Exponential Map for a Vector Space [20] --
1.5 The Tangent Map of Exp [23] --
1.6 The Product in Logarithmic Coordinates [26] --
1.7 Dynkin’s Formula [29] --
1.8 Lie’s Fundamental Theorems [31] --
1.9 The Component of the Identity [36] --
1.10 Lie Subgroups and Homomorphisms [40] --
1.11 Quotients .. [49] --
1.12 Connected Commutative Lie Groups [58] --
1.13 Simply Connected Lie Groups [62] --
1.14 Lie’s Third Fundamental Theorem in Global Form [72] --
1.15 Exercises [81] --
1.16 Notes [86] --
References for Chapter One [90] --
2. Proper Actions --
2.1 Review [93] --
2.2 Bochner’s Linearization Theorem [96] --
2.3 Slices [98] --
2.4 Associated Fiber Bundles [100] --
2.5 Smooth Functions on the Orbit Space [103] --
2.6 Orbit Types and Local Action Types [107] --
2.7 The Stratification by Orbit Types [111] --
2.8 Principal and Regular Orbits [115] --
2.9 Blowing Up [122] --
2.10 Exercises [126] --
2.11 Notes [129] --
References for Chapter Two [130] --
3. Compact Lie Groups --
3.0 Introduction [131] --
3.1 Centralizers [132] --
3.2 The Adjoint Action [131] --
3.3 Connectedness of Centralizers [141] --
3.4 The Group of Rotations and its Covering Group [143] --
3.5 Roots and Root Spaces [144] --
3.6 Compact Lie Algebras [147] --
3.7 Maximal Tori [152] --
3.8 Orbit Structure in the Lie Algebra [155] --
3.9 The Fundamental Group [161] --
3.10 The Weyl Group as a Reflection Group [168] --
3.11 The Stiefel Diagram [172] --
3.12 Unitary Groups [175] --
3.13 Integration [179] --
3.14 The Weyl Integration Theorem [184] --
3.15 Nonconnected Groups [192] --
3.16 Exercises [199] --
3.17 Notes [202] --
References for Chapter Three [206] --
4. Representations of Compact Groups --
4.0 Introduction [209] --
4.1 Schur’s Lemma [212] --
4.2 Averaging [215] --
4.3 Matrix Coefficients and Characters [219] --
4.4 G-types [225] --
4.5 Finite Groups [232] --
4.6 The Peter-Weyl Theorem [233] --
4.7 Induced Representations [242] --
4.8 Reality [245] --
4.9 Weyl’s Character Formula [252] --
4.10 Weight Exercises [263] --
4.11 Highest Weight Vectors [285] --
4.12 The Borel-Weil Theorem [290] --
4.13 The Nonconnected Case [306] --
4.14 Exercises [318] --
4.15 Notes [322] --
References for Chapter Four [326] --
Appendices and Index --
A Appendix: Some Notions from Differential Geometry [329] --
B Appendix: Ordinary Differential Equations [331] --
References for Appendix [338] --
Subject Index [339] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 22 D875 (Browse shelf) Available A-9388

Incluye referencias bibliográficas e índice.

Preface V --
1. Lie Groups and Lie Algebras --
1.1 Lie Groups and their Lie Algebras [1] --
1.2 Examples [6] --
1.3 The Exponential Map [16] --
1.4 The Exponential Map for a Vector Space [20] --
1.5 The Tangent Map of Exp [23] --
1.6 The Product in Logarithmic Coordinates [26] --
1.7 Dynkin’s Formula [29] --
1.8 Lie’s Fundamental Theorems [31] --
1.9 The Component of the Identity [36] --
1.10 Lie Subgroups and Homomorphisms [40] --
1.11 Quotients .. [49] --
1.12 Connected Commutative Lie Groups [58] --
1.13 Simply Connected Lie Groups [62] --
1.14 Lie’s Third Fundamental Theorem in Global Form [72] --
1.15 Exercises [81] --
1.16 Notes [86] --
References for Chapter One [90] --
2. Proper Actions --
2.1 Review [93] --
2.2 Bochner’s Linearization Theorem [96] --
2.3 Slices [98] --
2.4 Associated Fiber Bundles [100] --
2.5 Smooth Functions on the Orbit Space [103] --
2.6 Orbit Types and Local Action Types [107] --
2.7 The Stratification by Orbit Types [111] --
2.8 Principal and Regular Orbits [115] --
2.9 Blowing Up [122] --
2.10 Exercises [126] --
2.11 Notes [129] --
References for Chapter Two [130] --
3. Compact Lie Groups --
3.0 Introduction [131] --
3.1 Centralizers [132] --
3.2 The Adjoint Action [131] --
3.3 Connectedness of Centralizers [141] --
3.4 The Group of Rotations and its Covering Group [143] --
3.5 Roots and Root Spaces [144] --
3.6 Compact Lie Algebras [147] --
3.7 Maximal Tori [152] --
3.8 Orbit Structure in the Lie Algebra [155] --
3.9 The Fundamental Group [161] --
3.10 The Weyl Group as a Reflection Group [168] --
3.11 The Stiefel Diagram [172] --
3.12 Unitary Groups [175] --
3.13 Integration [179] --
3.14 The Weyl Integration Theorem [184] --
3.15 Nonconnected Groups [192] --
3.16 Exercises [199] --
3.17 Notes [202] --
References for Chapter Three [206] --
4. Representations of Compact Groups --
4.0 Introduction [209] --
4.1 Schur’s Lemma [212] --
4.2 Averaging [215] --
4.3 Matrix Coefficients and Characters [219] --
4.4 G-types [225] --
4.5 Finite Groups [232] --
4.6 The Peter-Weyl Theorem [233] --
4.7 Induced Representations [242] --
4.8 Reality [245] --
4.9 Weyl’s Character Formula [252] --
4.10 Weight Exercises [263] --
4.11 Highest Weight Vectors [285] --
4.12 The Borel-Weil Theorem [290] --
4.13 The Nonconnected Case [306] --
4.14 Exercises [318] --
4.15 Notes [322] --
References for Chapter Four [326] --
Appendices and Index --
A Appendix: Some Notions from Differential Geometry [329] --
B Appendix: Ordinary Differential Equations [331] --
References for Appendix [338] --
Subject Index [339] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha