A journey through representation theory : from finite groups to Quivers via Algebras / Caroline Gruson y Vera Serganova

Por: Gruson, CarolineColaborador(es): Serganova, VeraSeries UniversitextEditor: Cham Springer 2018Edición: 1st edDescripción: 223 pages ; 24 cmISBN: 9783319982694Otra clasificación: 20-02 (16G20 16T05 20C30 20G05)
Contenidos:
Preface vii --
Chapter 1. Introduction to representation theory of finite groups [1] --
1. Definitions and examples [1] --
2. Ways to produce new representations [3] --
3. Invariant subspaces and irreducibility [4] --
4. Characters [7] --
5. Examples [15] --
6. Invariant forms [18] --
7. Representations over R [21] --
8. Relationship between representations over R and over C [22] --
Chapter 2. Modules with applications to finite groups [25] --
1. Modules over associative rings [25] --
2. Finitely generated modules and Noetherian rings [28] --
3. The centre of the group algebra k (G) [30] --
4. One application [33] --
5. General facts on induced modules [34] --
6. Induced representations for groups [36] --
7. Double cosets and restriction to a subgroup [38] --
8. Mackey’s criterion [40] --
9. Hecke algebras, a first glimpse [41] --
10. Some examples [42] --
11. Some general facts about field extension [43] --
12. Artin’s theorem and representations over Q [45] --
Chapter 3. Representations of compact groups [47] --
1. Compact groups [47] --
2. Orthogonality relations and Peter-Weyl Theorem [55] --
3. Examples [58] --
Chapter 4. Results about unitary representations [65] --
1. Unitary representations of Rn and Fourier transform [65] --
2. Heisenberg groups and the Stone—von Neumann theorem70 --
3. Representations of SL2 (R) [77] --
Chapter 5. On algebraic methods [81] --
1. Introduction [81] --
2. Semisimple modules and density theorem [81] --
3. Wedderburn—Artin theorem [84] --
4. Jordan-Holder theorem and indecomposable modules [85] --
5. A bit of homological algebra [90] --
6. Projective modules [93] --
7. Representations of Artinian rings [99] --
8. Abelian categories [103] --
Chapter 6. Symmetric groups, Schur—Weyl duality and positive self-adjoint Hopf algebras [105] --
1. Representations of symmetric groups [105] --
2. Schur—Weyl duality [110] --
3. General facts on Hopf algebras [104] --
4. The Hopf algebra associated to the representations of symmetric groups [117] --
5. Classification of PSH algebras part 1: decomposition theorem [119] --
6. Classification of PSH algebras part 2: unicity for the rank 1 case [121] --
7. Bases of PSH algebras of rank one [125] --
8. Harvest [131] --
9. General linear groups over a finite field [138] --
Chapter 7. Introduction to representation theory of quivers [149] --
1. Representations of quivers [149] --
2. Path algebra [152] --
3. Standard resolution and consequences [155] --
4. Bricks [159] --
5. Orbits in representation varieties [161] --
6. Coxeter-Dynkin and affine graphs [163] --
7. Quivers of finite type and Gabriel’s theorem [167] --
Chapter 8. Representations of Dynkin and affine quivers [169] --
1. Reflection functors [169] --
2. Reflection functors and change of orientation [172] --
3. Weyl group and reflection functors [172] --
4. Coxeter functors [173] --
5. Further properties of Coxeter functors [174] --
6. Affine root systems [177] --
7 Preprojective and preiniective representations [179] --
8. Regular representations [182] --
9. Indecomposable representations of affine quivers [189] --
Chapter 9. Applications of quivers [193] --
1. From abelian categories to algebras [193] --
2. From categories to quivers [195] --
3. Finitely represented, tame and wild algebras [199] --
4. Frobenius algebras [200] --
5. Application to group algebras [202] --
6. On certain categories of -modules [205] --
Bibliography [219] --
Index [221] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 20 G892 (Browse shelf) Available A-9386

Preface vii --
Chapter 1. Introduction to representation theory of finite groups [1] --
1. Definitions and examples [1] --
2. Ways to produce new representations [3] --
3. Invariant subspaces and irreducibility [4] --
4. Characters [7] --
5. Examples [15] --
6. Invariant forms [18] --
7. Representations over R [21] --
8. Relationship between representations over R and over C [22] --
Chapter 2. Modules with applications to finite groups [25] --
1. Modules over associative rings [25] --
2. Finitely generated modules and Noetherian rings [28] --
3. The centre of the group algebra k (G) [30] --
4. One application [33] --
5. General facts on induced modules [34] --
6. Induced representations for groups [36] --
7. Double cosets and restriction to a subgroup [38] --
8. Mackey’s criterion [40] --
9. Hecke algebras, a first glimpse [41] --
10. Some examples [42] --
11. Some general facts about field extension [43] --
12. Artin’s theorem and representations over Q [45] --
Chapter 3. Representations of compact groups [47] --
1. Compact groups [47] --
2. Orthogonality relations and Peter-Weyl Theorem [55] --
3. Examples [58] --
Chapter 4. Results about unitary representations [65] --
1. Unitary representations of Rn and Fourier transform [65] --
2. Heisenberg groups and the Stone—von Neumann theorem70 --
3. Representations of SL2 (R) [77] --
Chapter 5. On algebraic methods [81] --
1. Introduction [81] --
2. Semisimple modules and density theorem [81] --
3. Wedderburn—Artin theorem [84] --
4. Jordan-Holder theorem and indecomposable modules [85] --
5. A bit of homological algebra [90] --
6. Projective modules [93] --
7. Representations of Artinian rings [99] --
8. Abelian categories [103] --
Chapter 6. Symmetric groups, Schur—Weyl duality and positive self-adjoint Hopf algebras [105] --
1. Representations of symmetric groups [105] --
2. Schur—Weyl duality [110] --
3. General facts on Hopf algebras [104] --
4. The Hopf algebra associated to the representations of symmetric groups [117] --
5. Classification of PSH algebras part 1: decomposition theorem [119] --
6. Classification of PSH algebras part 2: unicity for the rank 1 case [121] --
7. Bases of PSH algebras of rank one [125] --
8. Harvest [131] --
9. General linear groups over a finite field [138] --
Chapter 7. Introduction to representation theory of quivers [149] --
1. Representations of quivers [149] --
2. Path algebra [152] --
3. Standard resolution and consequences [155] --
4. Bricks [159] --
5. Orbits in representation varieties [161] --
6. Coxeter-Dynkin and affine graphs [163] --
7. Quivers of finite type and Gabriel’s theorem [167] --
Chapter 8. Representations of Dynkin and affine quivers [169] --
1. Reflection functors [169] --
2. Reflection functors and change of orientation [172] --
3. Weyl group and reflection functors [172] --
4. Coxeter functors [173] --
5. Further properties of Coxeter functors [174] --
6. Affine root systems [177] --
7 Preprojective and preiniective representations [179] --
8. Regular representations [182] --
9. Indecomposable representations of affine quivers [189] --
Chapter 9. Applications of quivers [193] --
1. From abelian categories to algebras [193] --
2. From categories to quivers [195] --
3. Finitely represented, tame and wild algebras [199] --
4. Frobenius algebras [200] --
5. Application to group algebras [202] --
6. On certain categories of -modules [205] --
Bibliography [219] --
Index [221] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha