Groups acting on hyperbolic space : harmonic analysis and number theory / J. Elstrodt, F. Grunewald, J. Mennicke.

Por: Elstrodt, J. (Jürgen), 1940-Colaborador(es): Grunewald, F. (Fritz), 1949-2010 | Mennicke, J. L. (Jens L.)Series Springer monographs in mathematicsEditor: Berlin ; New York : Springer, c1998Descripción: xv, 524 p. ; 25 cmISBN: 3540627456 (Berlin : alk. paper)Tema(s): Spectral theory (Mathematics) | Selberg trace formula | Automorphic forms | Functions, ZetaOtra clasificación: 11F72 (11F12 11M36 22E40 57M50 57S30) Recursos en línea: Publisher description | Table of contents only
Contenidos:
Preface VII --
1. Three-Dimensional Hyperbolic Space [1] --
1.1 The Upper Half-Space Model [1] --
1.2 The Unit Ball Model [9] --
1.3 The Exceptional Isomorphism [12] --
1.4 The Hyperboloid Model [20] --
1.5 The Kleinian Model [22] --
1.6 Upper Half-Space as a Symmetric Space [28] --
1.7 Notes and Remarks [30] --
2. Groups Acting Discontinuously on Three-Dimensional Hyperbolic Space [33] --
2.1 Discontinuity [33] --
2.2 Fundamental Domains and Polyhedra [41] --
2.3 Shimizu’s Lemma [48] --
2.4 Jorgensen’s Inequality [53] --
2.5 Covolumes [59] --
2.6 Hyperbolic Lattice Point Problems [67] --
2.7 Generators and Relations [71] --
2.8 Conjugacy and Commensurability [75] --
2.9 A Lemma of Selberg [78] --
2.10 Notes and Remarks [80] --
3. Automorphic Functions [83] --
3.1 Definition and Elementary Properties of some Poincaré Series [84] --
3.2 Definition and Elementary Properties of Eisenstein Series [98] --
3.3 Fourier Expansion in Cusps and the MaaB-Selberg Relations [105] --
3.4 Fourier Expansion of Eisenstein Series [110] --
3.5 Expansion of Eigenfunctions and the Selberg Transform [114] --
3.6 Behaviour of the Poincar4 Series at the Abscissa of Convergence [122] --
3.7 Notes and Remarks [129] --
4. Spectral Theory of the Laplace Operator [131] --
4.1 Essential Self-Adjointness of the Laplace-Beltrami Operator [132] --
4.2 The Resolvent Kernel [143] --
4.3 Hilbert-Schmidt Type Resolvents [156] --
4.4 Analytic Continuation of the Resolvent Kernel [162] --
4.5 Approximation by Kernels of Hilbert-Schmidt Type [169] --
5. Spectral Theory of the Laplace Operator for Cocompact Groups [185] --
5.1 The Hyperbolic Lattice-Point Problem [187] --
5.2 Computation of the Trace [190] --
5.3 Huber’s Theorem [201] --
5.4 The Selberg Zeta Function [205] --
5.5 Weyl’s Asymptotic Law and the Hadamard Factorisation of the Zeta Function [210] --
5.6 Analogue of the Lindelöf Hypothesis for the Selberg Zeta Function [218] --
5.7 The Prime Geodesic Theorem [222] --
5.8 Notes and Remarks [228] --
6. Spectral Theory of the Laplace Operator for Cofinite Groups [231] --
6.1 Meromorphic Continuation of the Eisenstein Series [231] --
6.2 Generalities on Eigenfunctions and Eigenpackets [244] --
6.3 Spectral Decomposition Theory [265] --
6.4 Spectral Expansions of Integral Kernels and Poincaré Series [276] --
6.5 The Trace Formula and some Applications [296] --
6.6 Notes and Remarks [310] --
7. PSL(2) over Rings of Imaginary Quadratic Integers [311] --
7.1 Introduction of the Groups [311] --
7.2 The Cusps [313] --
7.3 Description of a Fundamental Domain [318] --
7.4 Groups Commensurable with PSL(2,Q) [327] --
7.5 The Group Theoretic Structure of PSL(2.Q) [334] --
7.6 Spectral Theory of the Laplace Operator [346] --
7.7 Notes and Remarks [356] --
8. Eisenstein Series for PSL(2) over Imaginary Quadratic Integers [359] --
8.1 Functions Closely Related to Eisenstein Series [359] --
8.2 Fburier Expansion of Eisenstein Series for PSL(2,Q) [363] --
8.3 Meromorphic Continuation by Fourier Expansion and the Kronecker Limit Formula [370] --
8.4 Special Values of Eisenstein Series [380] --
8.5 Applications to Zeta Functions and Asymptotics of Divisor Sums [393] --
8.6 Non-Vanishing of L-Functions [397] --
8.7 Meromorphic Continuation by Integral Representation [400] --
8.8 Computation of the Volume [402] --
8.9 Weyl’s Asymptotic Law [404] --
9. Integral Binary Hermitian Forms [407] --
9.1 Upper Half-Space and Binary Hermitian Forms [407] --
9.2 Reduction Theory [410] --
9.3 Representation Numbers of Binary Hermitian Forms [414] --
9.4 Zeta Functions for Binary Hermitian Forms [425] --
9.5 The Mass-Formula [430] --
9.6 Computation of the Covolume of PSL(2, Q) à la Humbert [436] --
9.7 Notes and Remarks [441] --
10. Examples of Discontinuous Groups [443] --
10.1 Groups of Quaternions [444] --
10.2 Unit Groups of Quadratic Forms [456] --
10.3 Arithmetic and Non-Arithmetic Discrete Groups [477] --
10.4 The Tetrahedral Groups [480] --
10.5 Notes and Remarks [494] --
References [497] --
Subject Index [521] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 11 El49 (Browse shelf) Available A-9385

Includes bibliographical references (p. [497]-520) and index.

Preface VII --
1. Three-Dimensional Hyperbolic Space [1] --
1.1 The Upper Half-Space Model [1] --
1.2 The Unit Ball Model [9] --
1.3 The Exceptional Isomorphism [12] --
1.4 The Hyperboloid Model [20] --
1.5 The Kleinian Model [22] --
1.6 Upper Half-Space as a Symmetric Space [28] --
1.7 Notes and Remarks [30] --
2. Groups Acting Discontinuously on Three-Dimensional Hyperbolic Space [33] --
2.1 Discontinuity [33] --
2.2 Fundamental Domains and Polyhedra [41] --
2.3 Shimizu’s Lemma [48] --
2.4 Jorgensen’s Inequality [53] --
2.5 Covolumes [59] --
2.6 Hyperbolic Lattice Point Problems [67] --
2.7 Generators and Relations [71] --
2.8 Conjugacy and Commensurability [75] --
2.9 A Lemma of Selberg [78] --
2.10 Notes and Remarks [80] --
3. Automorphic Functions [83] --
3.1 Definition and Elementary Properties of some Poincaré Series [84] --
3.2 Definition and Elementary Properties of Eisenstein Series [98] --
3.3 Fourier Expansion in Cusps and the MaaB-Selberg Relations [105] --
3.4 Fourier Expansion of Eisenstein Series [110] --
3.5 Expansion of Eigenfunctions and the Selberg Transform [114] --
3.6 Behaviour of the Poincar4 Series at the Abscissa of Convergence [122] --
3.7 Notes and Remarks [129] --
4. Spectral Theory of the Laplace Operator [131] --
4.1 Essential Self-Adjointness of the Laplace-Beltrami Operator [132] --
4.2 The Resolvent Kernel [143] --
4.3 Hilbert-Schmidt Type Resolvents [156] --
4.4 Analytic Continuation of the Resolvent Kernel [162] --
4.5 Approximation by Kernels of Hilbert-Schmidt Type [169] --
5. Spectral Theory of the Laplace Operator for Cocompact Groups [185] --
5.1 The Hyperbolic Lattice-Point Problem [187] --
5.2 Computation of the Trace [190] --
5.3 Huber’s Theorem [201] --
5.4 The Selberg Zeta Function [205] --
5.5 Weyl’s Asymptotic Law and the Hadamard Factorisation of the Zeta Function [210] --
5.6 Analogue of the Lindelöf Hypothesis for the Selberg Zeta Function [218] --
5.7 The Prime Geodesic Theorem [222] --
5.8 Notes and Remarks [228] --
6. Spectral Theory of the Laplace Operator for Cofinite Groups [231] --
6.1 Meromorphic Continuation of the Eisenstein Series [231] --
6.2 Generalities on Eigenfunctions and Eigenpackets [244] --
6.3 Spectral Decomposition Theory [265] --
6.4 Spectral Expansions of Integral Kernels and Poincaré Series [276] --
6.5 The Trace Formula and some Applications [296] --
6.6 Notes and Remarks [310] --
7. PSL(2) over Rings of Imaginary Quadratic Integers [311] --
7.1 Introduction of the Groups [311] --
7.2 The Cusps [313] --
7.3 Description of a Fundamental Domain [318] --
7.4 Groups Commensurable with PSL(2,Q) [327] --
7.5 The Group Theoretic Structure of PSL(2.Q) [334] --
7.6 Spectral Theory of the Laplace Operator [346] --
7.7 Notes and Remarks [356] --
8. Eisenstein Series for PSL(2) over Imaginary Quadratic Integers [359] --
8.1 Functions Closely Related to Eisenstein Series [359] --
8.2 Fburier Expansion of Eisenstein Series for PSL(2,Q) [363] --
8.3 Meromorphic Continuation by Fourier Expansion and the Kronecker Limit Formula [370] --
8.4 Special Values of Eisenstein Series [380] --
8.5 Applications to Zeta Functions and Asymptotics of Divisor Sums [393] --
8.6 Non-Vanishing of L-Functions [397] --
8.7 Meromorphic Continuation by Integral Representation [400] --
8.8 Computation of the Volume [402] --
8.9 Weyl’s Asymptotic Law [404] --
9. Integral Binary Hermitian Forms [407] --
9.1 Upper Half-Space and Binary Hermitian Forms [407] --
9.2 Reduction Theory [410] --
9.3 Representation Numbers of Binary Hermitian Forms [414] --
9.4 Zeta Functions for Binary Hermitian Forms [425] --
9.5 The Mass-Formula [430] --
9.6 Computation of the Covolume of PSL(2, Q) à la Humbert [436] --
9.7 Notes and Remarks [441] --
10. Examples of Discontinuous Groups [443] --
10.1 Groups of Quaternions [444] --
10.2 Unit Groups of Quadratic Forms [456] --
10.3 Arithmetic and Non-Arithmetic Discrete Groups [477] --
10.4 The Tetrahedral Groups [480] --
10.5 Notes and Remarks [494] --
References [497] --
Subject Index [521] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha