Compact Lie groups / Mark R. Sepanski.

Por: Sepanski, Mark RSeries Graduate texts in mathematics ; 235Editor: New York, N.Y. : Springer, c2007Descripción: xii, 198 p. : ill. ; 25 cmISBN: 0387302638; 9780387302638Tema(s): Lie groups | Compact groupsOtra clasificación: 22Exx Recursos en línea: Table of contents only | Publisher description
Contenidos:
Preface xi --
1 Compact Lie Groups [1] --
1.1 Basic Notions [1] --
1.1.1 Manifolds [1] --
1.1.2 Lie Groups [2] --
1.1.3 Lie Subgroups and Homomorphisms [2] --
1.1.4 Compact Classical Lie Groups [4] --
1.1.5 Exercises [6] --
1.2 Basic Topology [8] --
1.2.1 Connectedness [8] --
1.2.2 Simply Connected Cover [10] --
1.2.3 Exercises [12] --
1.3 The Double Cover of SO(n) [13] --
1.3.1 Clifford Algebras [14] --
1.3.2 Spin, (R) and Pin„(R) [16] --
1.3.3 Exercises [18] --
1.4 Integration [19] --
1.4.1 Volume Forms [19] --
1.4.2 Invariant Integration [20] --
1.4.3 Fubini’s Theorem [22] --
1.4.4 Exercises [23] --
2 Representations [27] --
2.1 Basic Notions [27] --
2.1.1 Definitions [27] --
2.1.2 Examples [28] --
2.1.3 Exercises [32] --
2.2 Operations on Representations [34] --
2.2.1 Constructing New Representations [34] --
2.2.2 Irreducibility and Schur´s Lemma [36] --
2.2.3 Unitarity [37] --
2 2.4 Canonical Decomposition [39] --
2.2.5 Exercises [40] --
2.3 Examples of Irreducibility [41] --
2.3.1 SU(2) and V(C) [41] --
2.3.2 SO(n)and Harmonic Polynomials [42] --
2.3.3 Spin and Half-Spin Representations [44] --
2.3.4 Exercises [45] --
3 Harmonic Analysis [47] --
3.1 Matrix Coefficients [47] --
3.1.1 Schur Orthogonality [47] --
3.1.2 Characters [47] --
3.1.3 Exercises [49] --
3.2 Infinite-Dimensional Representations [52] --
3.2.1 Basic Definitions and Schur's Lemma [54] --
3.2.2 G-Fimte Vectors [54] --
3.2.3 Canonical Decomposition [56] --
3.2.4 Exercises [59] --
3.3 The Peter-Weyl Theorem [60] --
3.3.1 The Left and Right Regular Representation [60] --
3.3.2 Main Result [64] --
3.3.3 Applications [66] --
3.3.4 Exercises [69] --
3.4 Fourier Theory [70] --
3.4.1 Convolution [71] --
3.4.2 Plancherel Theorem [72] --
3.4.3 Projection Operators and More General Spaces [77] --
3.4.4 Exercises [79] --
4 Lie Algebras [81] --
4.1 Basic Definitions [81] --
4.1.1 Lie Algebras of Linear Lie Groups [81] --
4.1.2 Exponential Map [83] --
4.1.3 Lie Algebras for the Compact Classical Lie Groups [84] --
4.1.4 Exercises [86] --
4.2 Further Constructions [88] --
4.2.1 Lie Algebra Homomorphisms [88] --
4.2.2 Lie Subgroups and Subalgebras [91] --
4.2.3 Covering Homomorphisms [92] --
4.2.4 Exercises [93] --
5.1 Abelian Subgroups and Subalgebras [97] --
5.1.1 Maximal Tori and Cartan Subalgebras [97] --
5.1.2 Examples [98] --
5.1.3 Conjugacy of Cartan Subalgebras [100] --
5.1.4 Maximal Torus Theorem [102] --
5.1.5 Exercises [103] --
5.2 Structure [105] --
5.2.1 Exponential Map Revisited [105] --
5.2.2 Lie Algebra Structure [108] --
5.2.3 Commutator Theorem [109] --
5.2.4 Compact Lie Group Structure [110] --
5.2.5 Exercises [111] --
6 Roots and Associated Structures --
6.1 Root Theory [113] --
6.1.1 Rcpfcscnuiions of Lie Algebras [113] --
6.1.2 Complex trtcotion of Lie Algebras [113] --
6.1.3 Weights [115] --
6.1.4 Roots [116] --
6.1.5 Compact ClassicaL Lie Group Examples [117] --
6.1.6 Exercises [118] --
6.2 The Standards1(2, C) Triple [120] --
6.2.1 Cartin Involution [123] --
6.2.2 Killing Form [124] --
6.2.3 The Standard s(2.0 and 2)Triples [125] --
6.2.4 Exercises [129] --
6.3 Lattices [130] --
63.1 Definitions [130] --
63.2 Relations131 --
63.3 Center and Fundamental Group [132] --
6.3.4 Exercises134 --
6.4 Weight Group [136] --
6.4.1 Group Picture [136] --
6.4.2 Classical Examples137 --
6.4.3 Simple Routs and Weyl Chambers139 --
6.4.4 The 1 Group ax a Reflection Group [143] --
6.4.5 Exercises [146] --
7 Highest Weight Threory [151] --
7.1 Highest Weights [151] --
7.1.1 Exercises [154] --
7.2 Weyl Integration Formula [156] --
7.2.1 Regular Elements [156] --
7.2.2 Main Theorem [159] --
7.2.3 Exercises [162] --
7.3 Weyl Character Formula [163] --
7.3.1 Machinery [163] --
7.3.2 Main Theorem [166] --
7.3.3 Weyl Denominator Formula [168] --
7.3.4 Weyl Dimension Formula [168] --
7.3.5 Highest Weight Classification [169] --
7.3.6 Fundamental Group [170] --
7.3.7 Exercises [173] --
7.4 Borel-Weil Theorem [176] --
7.4.1 Induced Representations [176] --
7.4.2 Complex Structure on G/T [178] --
7.4.3 Holomorphic Functions [180] --
7.4.4 Main Theorem [182] --
7.4.5 Exercises [184] --
References [187] --
Index [193] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 22 Se479 (Browse shelf) Available A-9384

Includes bibliographical references (p. [187]-191) and index.

Preface xi --
1 Compact Lie Groups [1] --
1.1 Basic Notions [1] --
1.1.1 Manifolds [1] --
1.1.2 Lie Groups [2] --
1.1.3 Lie Subgroups and Homomorphisms [2] --
1.1.4 Compact Classical Lie Groups [4] --
1.1.5 Exercises [6] --
1.2 Basic Topology [8] --
1.2.1 Connectedness [8] --
1.2.2 Simply Connected Cover [10] --
1.2.3 Exercises [12] --
1.3 The Double Cover of SO(n) [13] --
1.3.1 Clifford Algebras [14] --
1.3.2 Spin, (R) and Pin„(R) [16] --
1.3.3 Exercises [18] --
1.4 Integration [19] --
1.4.1 Volume Forms [19] --
1.4.2 Invariant Integration [20] --
1.4.3 Fubini’s Theorem [22] --
1.4.4 Exercises [23] --
2 Representations [27] --
2.1 Basic Notions [27] --
2.1.1 Definitions [27] --
2.1.2 Examples [28] --
2.1.3 Exercises [32] --
2.2 Operations on Representations [34] --
2.2.1 Constructing New Representations [34] --
2.2.2 Irreducibility and Schur´s Lemma [36] --
2.2.3 Unitarity [37] --
2 2.4 Canonical Decomposition [39] --
2.2.5 Exercises [40] --
2.3 Examples of Irreducibility [41] --
2.3.1 SU(2) and V(C) [41] --
2.3.2 SO(n)and Harmonic Polynomials [42] --
2.3.3 Spin and Half-Spin Representations [44] --
2.3.4 Exercises [45] --
3 Harmonic Analysis [47] --
3.1 Matrix Coefficients [47] --
3.1.1 Schur Orthogonality [47] --
3.1.2 Characters [47] --
3.1.3 Exercises [49] --
3.2 Infinite-Dimensional Representations [52] --
3.2.1 Basic Definitions and Schur's Lemma [54] --
3.2.2 G-Fimte Vectors [54] --
3.2.3 Canonical Decomposition [56] --
3.2.4 Exercises [59] --
3.3 The Peter-Weyl Theorem [60] --
3.3.1 The Left and Right Regular Representation [60] --
3.3.2 Main Result [64] --
3.3.3 Applications [66] --
3.3.4 Exercises [69] --
3.4 Fourier Theory [70] --
3.4.1 Convolution [71] --
3.4.2 Plancherel Theorem [72] --
3.4.3 Projection Operators and More General Spaces [77] --
3.4.4 Exercises [79] --
4 Lie Algebras [81] --
4.1 Basic Definitions [81] --
4.1.1 Lie Algebras of Linear Lie Groups [81] --
4.1.2 Exponential Map [83] --
4.1.3 Lie Algebras for the Compact Classical Lie Groups [84] --
4.1.4 Exercises [86] --
4.2 Further Constructions [88] --
4.2.1 Lie Algebra Homomorphisms [88] --
4.2.2 Lie Subgroups and Subalgebras [91] --
4.2.3 Covering Homomorphisms [92] --
4.2.4 Exercises [93] --
5.1 Abelian Subgroups and Subalgebras [97] --
5.1.1 Maximal Tori and Cartan Subalgebras [97] --
5.1.2 Examples [98] --
5.1.3 Conjugacy of Cartan Subalgebras [100] --
5.1.4 Maximal Torus Theorem [102] --
5.1.5 Exercises [103] --
5.2 Structure [105] --
5.2.1 Exponential Map Revisited [105] --
5.2.2 Lie Algebra Structure [108] --
5.2.3 Commutator Theorem [109] --
5.2.4 Compact Lie Group Structure [110] --
5.2.5 Exercises [111] --
6 Roots and Associated Structures --
6.1 Root Theory [113] --
6.1.1 Rcpfcscnuiions of Lie Algebras [113] --
6.1.2 Complex trtcotion of Lie Algebras [113] --
6.1.3 Weights [115] --
6.1.4 Roots [116] --
6.1.5 Compact ClassicaL Lie Group Examples [117] --
6.1.6 Exercises [118] --
6.2 The Standards1(2, C) Triple [120] --
6.2.1 Cartin Involution [123] --
6.2.2 Killing Form [124] --
6.2.3 The Standard s(2.0 and 2)Triples [125] --
6.2.4 Exercises [129] --
6.3 Lattices [130] --
63.1 Definitions [130] --
63.2 Relations131 --
63.3 Center and Fundamental Group [132] --
6.3.4 Exercises134 --
6.4 Weight Group [136] --
6.4.1 Group Picture [136] --
6.4.2 Classical Examples137 --
6.4.3 Simple Routs and Weyl Chambers139 --
6.4.4 The 1 Group ax a Reflection Group [143] --
6.4.5 Exercises [146] --
7 Highest Weight Threory [151] --
7.1 Highest Weights [151] --
7.1.1 Exercises [154] --
7.2 Weyl Integration Formula [156] --
7.2.1 Regular Elements [156] --
7.2.2 Main Theorem [159] --
7.2.3 Exercises [162] --
7.3 Weyl Character Formula [163] --
7.3.1 Machinery [163] --
7.3.2 Main Theorem [166] --
7.3.3 Weyl Denominator Formula [168] --
7.3.4 Weyl Dimension Formula [168] --
7.3.5 Highest Weight Classification [169] --
7.3.6 Fundamental Group [170] --
7.3.7 Exercises [173] --
7.4 Borel-Weil Theorem [176] --
7.4.1 Induced Representations [176] --
7.4.2 Complex Structure on G/T [178] --
7.4.3 Holomorphic Functions [180] --
7.4.4 Main Theorem [182] --
7.4.5 Exercises [184] --
References [187] --
Index [193] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha