The arithmetic of hyperbolic three-manifolds / Colin Maclachlan, Alan W. Reid.

Por: Maclachlan, CColaborador(es): Reid, Alan WSeries Graduate texts in mathematics ; 219Editor: New York : Springer, c2003Descripción: xiii, 463 p. : ill. ; 24 cmISBN: 0387983864 (acidfree paper)Tema(s): Three-manifolds (Topology)Otra clasificación: 57M50 (11R52) Recursos en línea: Publisher description | Table of contents only
Contenidos:
Preface v --
0 Number-Theoretic Menagerie [1] --
0.1 Number Fields and Field Extensions [2] --
0.2 Algebraic Integers [6] --
0.3 Ideals in Rings of Integers [11] --
0.4 Units [20] --
0.5 Class Groups [22] --
0.6 Valuations [24] --
0.7 Completions [29] --
0.8 Adèles and Idèles [35] --
0.9 Quadratic Forms [39] --
1 Kleinian Groups and Hyperbolic Manifolds [47] --
1.1 PSL(2, C) and Hyperbolic 3-Space [47] --
1.2 Subgroups of PSL(2, C) [50] --
1.3 Hyperbolic Manifolds and Or bifolds [55] --
1.4 Examples [57] --
1.4.1 Bianchi Groups [58] --
1.4.2 Coxeter Groups [59] --
1.4.3 Figure 8 Knot Complement [59] --
1.4.4 Hyperbolic Manifolds by Gluing [60] --
1.5 3-Manifold Topology and Dehn Surgery [62] --
1.5.1 3-Manifolds [63] --
1.5.2 Hyperbolic Manifolds [64] --
1.5.3 Dehn Surgery [65] --
1.6 Rigidity [67] --
1.7 Volumes and Ideal Tetrahedra [69] --
1.8 Further Reading [74] --
2 Quaternion Algebras I [77] --
2.1 Quaternion Algebras [77] --
2.2 Orders in Quaternion Algebras [82] --
2.3 Quaternion Algebras and Quadratic Forms [87] --
2.4 Orthogonal Groups [91] --
2.5 Quaternion Algebras over the Reals [92] --
2.6 Quaternion Algebras over P-adic Fields [94] --
2.7 Quaternion Algebras over Number Fields [98] --
2.8 Central Simple Algebras [101] --
2.9 The Skolem Noether Theorem [105] --
2.10 Further Reading [108] --
3 Invariant Trace Fields [111] --
3.1 Trace Fields for Kleinian Groups of Finite Covolume [111] --
3.2 Quaternion Algebras for Subgroups of SL(2, C) [114] --
3.3 Invariant Trace Fields and Quaternion Algebras [116] --
3.4 Trace Relations [120] --
3.5 Generators for Trace Fields [123] --
3.6 Generators for Invariant Quaternion Algebras [128] --
3.7 Further Reading [130] --
4 Examples [133] --
4.1 Bianchi Groups [133] --
4.2 Knot and Link Complements [134] --
4.3 Hyperbolic Fibre Bundles [135] --
4.4 Figure 8 Knot Complement [137] --
4.4.1 Group Presentation [137] --
4.4.2 Ideal Tetrahedra [137] --
4.4.3 Once-Punctured Torus Bundle [138] --
4.5 Two-Bridge Knots and Links [140] --
4.6 Once-Punctured Torus Bundles [142] --
4.7 Polyhedral Groups [143] --
4.7.1 Non-compact Tetrahedra [144] --
4.7.2 Compact Tetrahedra [146] --
4.7.3 Prisms and Non-integral Traces [149] --
4.8 Dehn Surgery Examples [152] --
4.8.1 Jprgensen’s Compact Fibre Bundles [152] --
4.8.2 Fibonacci Manifolds [153] --
4.8.3 The Weeks-Matveev-Fomenko Manifold [156] --
4.9 Fuchsian Groups [159] --
4.10 Further Reading [162] --
5 Applications [165] --
5.1 Discreteness Criteria [165] --
5.2 Bass’s Theorem [168] --
5.2.1 Tree of SL(2, Kp) [169] --
5.2.2 Non-integral Traces [170] --
5.2.3 Free Product with Amalgamation [171] --
5.3 Geodesics and Totally Geodesic Surfaces [173] --
5.3.1 Manifolds with No Geodesic Surfaces [173] --
5.3.2 Embedding Geodesic Surfaces [174] --
5.3.3 The Non-cocompact Case [176] --
5.3.4 Simple Geodesics [178] --
5.4 Further Hilbert Symbol Obstructions [180] --
5.5 Geometric Interpretation of the Invariant Trace Field [183] --
5.6 Constructing Invariant Trace Fields [189] --
5.7 Further Reading [194] --
6 Orders in Quaternion Algebras [197] --
6.1 Integers, Ideals and Orders [197] --
6.2 Localisation [200] --
6.3 Discriminants [205] --
6.4 The Local Case - I [207] --
6.5 The Local Case - II [209] --
6.6 Orders in the Global Case [214] --
6.7 The Type Number of a Quaternion Algebra [217] --
6.8 Further Reading [223] --
7 Quaternion Algebras II [225] --
7.1 Adèles and Idèles [226] --
7.2 Duality [229] --
7.3 Classification of Quaternion Algebras [233] --
7.4 Theorem on Norms [237] --
7.5 Local Tamagawa Measures [238] --
7.6 Tamagawa Numbers [244] --
7.7 The Strong Approximation Theorem [246] --
7.8 Further Reading [250] --
8 Arithmetic Kleinian Groups [253] --
8.1 Discrete Groups from Orders in Quaternion Algebras [254] --
8.2 Arithmetic Kleinian Groups [257] --
8.3 The Identification Theorem [261] --
8.4 Complete Commensurability Invariants [267] --
8.5 Algebraic Integers and Orders [272] --
9 Arithmetic Hyperbolic 3-Manifolds and Orbifolds [275] --
9.1 Bianchi Groups [275] --
9.2 Arithmetic Link Complements [277] --
9.3 Zimmert Sets and Cuspidal Cohomology [281] --
9.4 The Arithmetic Knot [285] --
9.5 Fuchsian Subgroups of Arithmetic Kleinian Groups [287] --
9.6 Fuchsian Subgroups of Bianchi Groups and Applications [292] --
9.7 Simple Geodesics [297] --
9.8 Hoovering Up [299] --
9.8.1 The Finite Subgroups A4, S4 and A5 [299] --
9.8.2 Week’s Manifold Again [300] --
9.9 Further Reading [302] --
10 Discrete Arithmetic Groups [305] --
10.1 Orthogonal Groups [306] --
10.2 SO(3,1) and SO(2,1) [310] --
10.3 General Discrete Arithmetic Groups and Margulis Theorem [315] --
10.4 Reflection Groups [322] --
10.4.1 Arithmetic Polyhedral Groups [325] --
10.4.2 Tetrahedral Groups [326] --
10.4.3 Prismatic Examples [327] --
10.5 Further Reading [329] --
11 Commensurable Arithmetic Groups and Volumes [331] --
11.1 Covolumes for Maximal Orders [332] --
11.2 Consequences of the Volume Formula [338] --
11.2.1 Arithmetic Kleinian Groups with Bounded Covolume [338] --
11.2.2 Volumes for Eichler Orders [340] --
11.2.3 Arithmetic Manifolds of Equal Volume [341] --
11.2.4 Estimating Volumes [342] --
11.2.5 A Tetrahedral Group [343] --
11.3 Fuchsian Groups [345] --
11.3.1 Arithmetic Fuchsian Groups with Bounded Covolume [345] --
11.3.2 Totally Real Fields [346] --
11.3.3 Fuchsian Triangle Groups [346] --
11.3.4 Signatures of Arithmetic Fuchsian Groups [350] --
11.4 Maximal Discrete Groups [352] --
11.5 Distribution of Volumes [356] --
11.6 Minimal Covolume [358] --
11.7 Minimum Covolume Groups [363] --
11.8 Further Reading [368] --
12 Length and Torsion in Arithmetic Hyperbolic Orbifolds [371] --
12.1 Loxodromic Elements and Geodesics [371] --
12.2 Geodesics and Embeddings in Quaternion Algebras [373] --
12.3 Short Geodesics, Lehmer’s and Salem’s Conjectures [377] --
12.4 Isospectrality [383] --
12.5 Torsion in Arithmetic Kleinian Groups [394] --
12.6 Volume Calculations Again [405] --
12.7 Volumes of Non-arithmetic Manifolds [410] --
12.8 Further Reading [413] --
13 Appendices [415] --
13.1 Compact Hyperbolic Ttetrahedra [415] --
13.2 Non-compact Hyperbolic Tetrahedra [415] --
13.2.1 Arithmetic Groups [415] --
13.2.2 Non-arithrnetic Groups [417] --
13.3 Arithmetic Fuchsian lYiangle Groups [418] --
13.4 Hyperbolic Knot Complements [419] --
13.5 Small Closed Manifolds [423] --
13.6 Small Cusped Manifolds [431] --
13.7 Arithmetic Zoo [436] --
13.7.1 Non-compact Examples [436] --
13.7.2 Compact Examples, Degree 2 Fields [439] --
13.7.3 Compact Examples, Degree 3 Fields [440] --
13.7.4 Compact Examples, Degree 4 Fields [441] --
Bibliography [443] --
Index --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 57 M161 (Browse shelf) Available A-9383

Incluye referencias bibliográficas e índice.

Preface v --
0 Number-Theoretic Menagerie [1] --
0.1 Number Fields and Field Extensions [2] --
0.2 Algebraic Integers [6] --
0.3 Ideals in Rings of Integers [11] --
0.4 Units [20] --
0.5 Class Groups [22] --
0.6 Valuations [24] --
0.7 Completions [29] --
0.8 Adèles and Idèles [35] --
0.9 Quadratic Forms [39] --
1 Kleinian Groups and Hyperbolic Manifolds [47] --
1.1 PSL(2, C) and Hyperbolic 3-Space [47] --
1.2 Subgroups of PSL(2, C) [50] --
1.3 Hyperbolic Manifolds and Or bifolds [55] --
1.4 Examples [57] --
1.4.1 Bianchi Groups [58] --
1.4.2 Coxeter Groups [59] --
1.4.3 Figure 8 Knot Complement [59] --
1.4.4 Hyperbolic Manifolds by Gluing [60] --
1.5 3-Manifold Topology and Dehn Surgery [62] --
1.5.1 3-Manifolds [63] --
1.5.2 Hyperbolic Manifolds [64] --
1.5.3 Dehn Surgery [65] --
1.6 Rigidity [67] --
1.7 Volumes and Ideal Tetrahedra [69] --
1.8 Further Reading [74] --
2 Quaternion Algebras I [77] --
2.1 Quaternion Algebras [77] --
2.2 Orders in Quaternion Algebras [82] --
2.3 Quaternion Algebras and Quadratic Forms [87] --
2.4 Orthogonal Groups [91] --
2.5 Quaternion Algebras over the Reals [92] --
2.6 Quaternion Algebras over P-adic Fields [94] --
2.7 Quaternion Algebras over Number Fields [98] --
2.8 Central Simple Algebras [101] --
2.9 The Skolem Noether Theorem [105] --
2.10 Further Reading [108] --
3 Invariant Trace Fields [111] --
3.1 Trace Fields for Kleinian Groups of Finite Covolume [111] --
3.2 Quaternion Algebras for Subgroups of SL(2, C) [114] --
3.3 Invariant Trace Fields and Quaternion Algebras [116] --
3.4 Trace Relations [120] --
3.5 Generators for Trace Fields [123] --
3.6 Generators for Invariant Quaternion Algebras [128] --
3.7 Further Reading [130] --
4 Examples [133] --
4.1 Bianchi Groups [133] --
4.2 Knot and Link Complements [134] --
4.3 Hyperbolic Fibre Bundles [135] --
4.4 Figure 8 Knot Complement [137] --
4.4.1 Group Presentation [137] --
4.4.2 Ideal Tetrahedra [137] --
4.4.3 Once-Punctured Torus Bundle [138] --
4.5 Two-Bridge Knots and Links [140] --
4.6 Once-Punctured Torus Bundles [142] --
4.7 Polyhedral Groups [143] --
4.7.1 Non-compact Tetrahedra [144] --
4.7.2 Compact Tetrahedra [146] --
4.7.3 Prisms and Non-integral Traces [149] --
4.8 Dehn Surgery Examples [152] --
4.8.1 Jprgensen’s Compact Fibre Bundles [152] --
4.8.2 Fibonacci Manifolds [153] --
4.8.3 The Weeks-Matveev-Fomenko Manifold [156] --
4.9 Fuchsian Groups [159] --
4.10 Further Reading [162] --
5 Applications [165] --
5.1 Discreteness Criteria [165] --
5.2 Bass’s Theorem [168] --
5.2.1 Tree of SL(2, Kp) [169] --
5.2.2 Non-integral Traces [170] --
5.2.3 Free Product with Amalgamation [171] --
5.3 Geodesics and Totally Geodesic Surfaces [173] --
5.3.1 Manifolds with No Geodesic Surfaces [173] --
5.3.2 Embedding Geodesic Surfaces [174] --
5.3.3 The Non-cocompact Case [176] --
5.3.4 Simple Geodesics [178] --
5.4 Further Hilbert Symbol Obstructions [180] --
5.5 Geometric Interpretation of the Invariant Trace Field [183] --
5.6 Constructing Invariant Trace Fields [189] --
5.7 Further Reading [194] --
6 Orders in Quaternion Algebras [197] --
6.1 Integers, Ideals and Orders [197] --
6.2 Localisation [200] --
6.3 Discriminants [205] --
6.4 The Local Case - I [207] --
6.5 The Local Case - II [209] --
6.6 Orders in the Global Case [214] --
6.7 The Type Number of a Quaternion Algebra [217] --
6.8 Further Reading [223] --
7 Quaternion Algebras II [225] --
7.1 Adèles and Idèles [226] --
7.2 Duality [229] --
7.3 Classification of Quaternion Algebras [233] --
7.4 Theorem on Norms [237] --
7.5 Local Tamagawa Measures [238] --
7.6 Tamagawa Numbers [244] --
7.7 The Strong Approximation Theorem [246] --
7.8 Further Reading [250] --
8 Arithmetic Kleinian Groups [253] --
8.1 Discrete Groups from Orders in Quaternion Algebras [254] --
8.2 Arithmetic Kleinian Groups [257] --
8.3 The Identification Theorem [261] --
8.4 Complete Commensurability Invariants [267] --
8.5 Algebraic Integers and Orders [272] --
9 Arithmetic Hyperbolic 3-Manifolds and Orbifolds [275] --
9.1 Bianchi Groups [275] --
9.2 Arithmetic Link Complements [277] --
9.3 Zimmert Sets and Cuspidal Cohomology [281] --
9.4 The Arithmetic Knot [285] --
9.5 Fuchsian Subgroups of Arithmetic Kleinian Groups [287] --
9.6 Fuchsian Subgroups of Bianchi Groups and Applications [292] --
9.7 Simple Geodesics [297] --
9.8 Hoovering Up [299] --
9.8.1 The Finite Subgroups A4, S4 and A5 [299] --
9.8.2 Week’s Manifold Again [300] --
9.9 Further Reading [302] --
10 Discrete Arithmetic Groups [305] --
10.1 Orthogonal Groups [306] --
10.2 SO(3,1) and SO(2,1) [310] --
10.3 General Discrete Arithmetic Groups and Margulis Theorem [315] --
10.4 Reflection Groups [322] --
10.4.1 Arithmetic Polyhedral Groups [325] --
10.4.2 Tetrahedral Groups [326] --
10.4.3 Prismatic Examples [327] --
10.5 Further Reading [329] --
11 Commensurable Arithmetic Groups and Volumes [331] --
11.1 Covolumes for Maximal Orders [332] --
11.2 Consequences of the Volume Formula [338] --
11.2.1 Arithmetic Kleinian Groups with Bounded Covolume [338] --
11.2.2 Volumes for Eichler Orders [340] --
11.2.3 Arithmetic Manifolds of Equal Volume [341] --
11.2.4 Estimating Volumes [342] --
11.2.5 A Tetrahedral Group [343] --
11.3 Fuchsian Groups [345] --
11.3.1 Arithmetic Fuchsian Groups with Bounded Covolume [345] --
11.3.2 Totally Real Fields [346] --
11.3.3 Fuchsian Triangle Groups [346] --
11.3.4 Signatures of Arithmetic Fuchsian Groups [350] --
11.4 Maximal Discrete Groups [352] --
11.5 Distribution of Volumes [356] --
11.6 Minimal Covolume [358] --
11.7 Minimum Covolume Groups [363] --
11.8 Further Reading [368] --
12 Length and Torsion in Arithmetic Hyperbolic Orbifolds [371] --
12.1 Loxodromic Elements and Geodesics [371] --
12.2 Geodesics and Embeddings in Quaternion Algebras [373] --
12.3 Short Geodesics, Lehmer’s and Salem’s Conjectures [377] --
12.4 Isospectrality [383] --
12.5 Torsion in Arithmetic Kleinian Groups [394] --
12.6 Volume Calculations Again [405] --
12.7 Volumes of Non-arithmetic Manifolds [410] --
12.8 Further Reading [413] --
13 Appendices [415] --
13.1 Compact Hyperbolic Ttetrahedra [415] --
13.2 Non-compact Hyperbolic Tetrahedra [415] --
13.2.1 Arithmetic Groups [415] --
13.2.2 Non-arithrnetic Groups [417] --
13.3 Arithmetic Fuchsian lYiangle Groups [418] --
13.4 Hyperbolic Knot Complements [419] --
13.5 Small Closed Manifolds [423] --
13.6 Small Cusped Manifolds [431] --
13.7 Arithmetic Zoo [436] --
13.7.1 Non-compact Examples [436] --
13.7.2 Compact Examples, Degree 2 Fields [439] --
13.7.3 Compact Examples, Degree 3 Fields [440] --
13.7.4 Compact Examples, Degree 4 Fields [441] --
Bibliography [443] --
Index --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha