Bayes theory / J.A. Hartigan.

Por: Hartigan, John A, 1937-Series Springer series in statisticsEditor: New York : Springer-Verlag, c1983Descripción: xii, 145 p. : ill. ; 24 cmTema(s): Mathematical statisticsOtra clasificación: *CODIGO*
Contenidos:
CHAPTER [1] --
Theories of Probability [1] --
1.0. Introduction [1] --
1.1. Logical Theories: Laplace [1] --
12. Logical Theories: Keynes and Jeffreys [2] --
1.3. Empirical Theories: Von Mises [3] --
1.4. Empirical Theories: Kolmogorov [5] --
1.5. Empirical Theories: Falsifiable Models [5] --
1.6. Subjective Theories: De Finetti [6] --
1.7. Subjective Theories: Good --
1.8. All the Probabilities [8] --
1.9. Infinite Axioms [10] --
1.10. Probability and Similarity [11] --
1.11. References [13] --
CHAPTER [2] --
Axioms [14] --
2.0. Notation [14] --
2.1. Probability Axioms [14] --
22. Prespaces and Rings [16] --
2.3. Random Variables [18] --
2.4. Probable Bets [18] --
2.5. Comparative Probability [20] --
2.6. Problems [20] --
2.7. References [22] --
CHAPTER [3] --
Conditional Probability [23] --
3.0. Introduction [23] --
3.1. Axioms of Conditional Probability [24] --
3.2. Product Probabilities [26] --
3.3. Quotient Probabilities [27] --
3.4. Marginalization Paradoxes [28] --
3.5. Bayes Theorem [29] --
3.6. Binomial Conditional Probability [31] --
3.7. Problems [32] --
3.8. References [33] --
CHAPTER [4] --
Convergence [34] --
4.0. Introduction [34] --
4.1. Convergence Definitions [34] --
4.2. Mean Convergence of Conditional Probabilities [35] --
4.3. Almost Sure Convergence of Conditional Probabilities [36] --
4.4. Consistency of Posterior Distributions [38] --
4.5. Binomial Case [38] --
4.6. Exchangeable Sequences [40] --
4.7. Problems [42] --
4.8. References [43] --
CHAPTER [5] --
Making Probabilities [44] --
5.0.Introduction [44] --
5.1.Information [44] --
5.2.Maximal Learning Probabilities [45] --
5.3.Invariance [47] --
5.4.The Jeffreys Density [48] --
5.5.Similarity Probability [50] --
5.6.Problems [53] --
5.7.References [55] --
CHAPTER [6] --
Decision Theory [56] --
6.0.Introduction [56] --
6.1.Admissible Decisions [56] --
6.2.Conditional Bayes Decisions [58] --
6.3.Admissibility of Bayes Decisions [59] --
6.4.Variations on the Definition of Admissibility [61] --
6.5.Problems [62] --
6.6.References [62] --
CHAPTER [7] --
Uniformity Criteria for Selecting Decisions [63] --
7.0. Introduction [63] --
7.1. Bayes Estimates Are Biased or Exact [63] --
7.2. Unbiased Location Estimates [64] --
7.3. Unbiased Bayes Tests [65] --
7.4. Confidence Regions [67] --
7.5. One-Sided Confidence Intervals Are Not Unitary Bayes [68] --
7.6. Conditional Bets [68] --
7.7. Problems [69] --
7.8. References [71] --
CHAPTER [8] --
Exponential Families [72] --
8.0. Introduction [72] --
8.1. Examples of Exponential Families [73] --
8.2. Prior Distributions for the Exponential Family [73] --
8.3. Normal Location [74] --
8.4. Binomial [76] --
8.5. Poisson [79] --
8.6. Normal Location and Scale [79] --
8.7. Problems [82] --
8.8. References [83] --
CHAPTER [9] --
Many Normal Means [84] --
9.0. Introduction [84] --
9.1. Baranchik’s Theorem [84] --
9.2. Bayes Estimates Beating the Straight Estimate [86] --
9.3. Shrinking towards the Mean [88] --
9.4. A Random Sample of Means [89] --
9.5. When Most of the Means Are Small [89] --
9.6. Multivariate Means [91] --
9.7. Regression [92] --
9.8. Many Means, Unknown Variance [92] --
9.9. Variance Components, One Way Analysis of Variance [93] --
9.10. Problems [94] --
9.11. References [95] --
CHAPTER [10] --
The Multinomial Distribution [96] --
10.0. Introduction [96] --
10.1. Dirichlet Priors [96] --
10.2. Admissibility of Maximum Likelihood, Multinomial Case [97] --
10.3. Inadmissibility of Maximum Likelihood, Poisson Case [99] --
10.4. Selection of Dirichlet Priors [100] --
10.5. Two Stage Poisson Models [101] --
10.6. Multinomials with Clusters [101] --
--
--
10.7. Multinomials with Similarities [102] --
10.8. Contingency Tables [103] --
10.9. Problems [104] --
10.10. References [105] --
CHAPTER [11] --
Asymptotic Normality of Posterior Distributions107 --
11.0. Introduction [107] --
11.1. A Crude Demonstration of Asymptotic Normality [108] --
11.2. Regularity Conditions for Asymptotic Normality [108] --
11.3. Pointwise Asymptotic Normality [111] --
11.4. Asymptotic Normality of Martingale Sequences [113] --
11.5. Higher Order Approximations to Posterior Densities [115] --
11.6. Problems [116] --
11.7. References [118] --
CHAPTER [12] --
Robustness of Bayes Methods [119] --
12.0. Introduction [119] --
12.1. Intervals of Probabilities [120] --
12.2. Intervals of Means [120] --
12.3. Intervals of Risk [121] --
12.4. Posterior Variances [122] --
12.5. Intervals of Posterior Probabilities [122] --
12.6. Asymptotic Behavior of Posterior Intervals [123] --
12.7. Asymptotic Intervals under Asymptotic Normality [124] --
12.8. A More General Range of Probabilities [125] --
12.9. Problems [126] --
12.10. References [126] --
CHAPTER [13] --
Nonparametric Bayes Procedures [127] --
13.0. Introduction [127] --
13.1. The Dirichlet Process [127] --
13.2 The Dirichlet Process on (0,1) [130] --
13.3. Bayes Theorem for a Dirichlet Process [131] --
13.4. The Empirical Process [132] --
13.5. Subsample Methods [133] --
13.6. The Tolerance Process [134] --
13.7. Problems [134] --
13.8. References [135] --
Author Index [137] --
Subject Index [141] --
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Oficina J - Consultar al bibliotecario 62 H329 (Browse shelf) Available A-9363

Includes bibliographies and indexes.

CHAPTER [1] --
Theories of Probability [1] --
1.0. Introduction [1] --
1.1. Logical Theories: Laplace [1] --
12. Logical Theories: Keynes and Jeffreys [2] --
1.3. Empirical Theories: Von Mises [3] --
1.4. Empirical Theories: Kolmogorov [5] --
1.5. Empirical Theories: Falsifiable Models [5] --
1.6. Subjective Theories: De Finetti [6] --
1.7. Subjective Theories: Good --
1.8. All the Probabilities [8] --
1.9. Infinite Axioms [10] --
1.10. Probability and Similarity [11] --
1.11. References [13] --
CHAPTER [2] --
Axioms [14] --
2.0. Notation [14] --
2.1. Probability Axioms [14] --
22. Prespaces and Rings [16] --
2.3. Random Variables [18] --
2.4. Probable Bets [18] --
2.5. Comparative Probability [20] --
2.6. Problems [20] --
2.7. References [22] --
CHAPTER [3] --
Conditional Probability [23] --
3.0. Introduction [23] --
3.1. Axioms of Conditional Probability [24] --
3.2. Product Probabilities [26] --
3.3. Quotient Probabilities [27] --
3.4. Marginalization Paradoxes [28] --
3.5. Bayes Theorem [29] --
3.6. Binomial Conditional Probability [31] --
3.7. Problems [32] --
3.8. References [33] --
CHAPTER [4] --
Convergence [34] --
4.0. Introduction [34] --
4.1. Convergence Definitions [34] --
4.2. Mean Convergence of Conditional Probabilities [35] --
4.3. Almost Sure Convergence of Conditional Probabilities [36] --
4.4. Consistency of Posterior Distributions [38] --
4.5. Binomial Case [38] --
4.6. Exchangeable Sequences [40] --
4.7. Problems [42] --
4.8. References [43] --
CHAPTER [5] --
Making Probabilities [44] --
5.0.Introduction [44] --
5.1.Information [44] --
5.2.Maximal Learning Probabilities [45] --
5.3.Invariance [47] --
5.4.The Jeffreys Density [48] --
5.5.Similarity Probability [50] --
5.6.Problems [53] --
5.7.References [55] --
CHAPTER [6] --
Decision Theory [56] --
6.0.Introduction [56] --
6.1.Admissible Decisions [56] --
6.2.Conditional Bayes Decisions [58] --
6.3.Admissibility of Bayes Decisions [59] --
6.4.Variations on the Definition of Admissibility [61] --
6.5.Problems [62] --
6.6.References [62] --
CHAPTER [7] --
Uniformity Criteria for Selecting Decisions [63] --
7.0. Introduction [63] --
7.1. Bayes Estimates Are Biased or Exact [63] --
7.2. Unbiased Location Estimates [64] --
7.3. Unbiased Bayes Tests [65] --
7.4. Confidence Regions [67] --
7.5. One-Sided Confidence Intervals Are Not Unitary Bayes [68] --
7.6. Conditional Bets [68] --
7.7. Problems [69] --
7.8. References [71] --
CHAPTER [8] --
Exponential Families [72] --
8.0. Introduction [72] --
8.1. Examples of Exponential Families [73] --
8.2. Prior Distributions for the Exponential Family [73] --
8.3. Normal Location [74] --
8.4. Binomial [76] --
8.5. Poisson [79] --
8.6. Normal Location and Scale [79] --
8.7. Problems [82] --
8.8. References [83] --
CHAPTER [9] --
Many Normal Means [84] --
9.0. Introduction [84] --
9.1. Baranchik’s Theorem [84] --
9.2. Bayes Estimates Beating the Straight Estimate [86] --
9.3. Shrinking towards the Mean [88] --
9.4. A Random Sample of Means [89] --
9.5. When Most of the Means Are Small [89] --
9.6. Multivariate Means [91] --
9.7. Regression [92] --
9.8. Many Means, Unknown Variance [92] --
9.9. Variance Components, One Way Analysis of Variance [93] --
9.10. Problems [94] --
9.11. References [95] --
CHAPTER [10] --
The Multinomial Distribution [96] --
10.0. Introduction [96] --
10.1. Dirichlet Priors [96] --
10.2. Admissibility of Maximum Likelihood, Multinomial Case [97] --
10.3. Inadmissibility of Maximum Likelihood, Poisson Case [99] --
10.4. Selection of Dirichlet Priors [100] --
10.5. Two Stage Poisson Models [101] --
10.6. Multinomials with Clusters [101] --
--
--
10.7. Multinomials with Similarities [102] --
10.8. Contingency Tables [103] --
10.9. Problems [104] --
10.10. References [105] --
CHAPTER [11] --
Asymptotic Normality of Posterior Distributions107 --
11.0. Introduction [107] --
11.1. A Crude Demonstration of Asymptotic Normality [108] --
11.2. Regularity Conditions for Asymptotic Normality [108] --
11.3. Pointwise Asymptotic Normality [111] --
11.4. Asymptotic Normality of Martingale Sequences [113] --
11.5. Higher Order Approximations to Posterior Densities [115] --
11.6. Problems [116] --
11.7. References [118] --
CHAPTER [12] --
Robustness of Bayes Methods [119] --
12.0. Introduction [119] --
12.1. Intervals of Probabilities [120] --
12.2. Intervals of Means [120] --
12.3. Intervals of Risk [121] --
12.4. Posterior Variances [122] --
12.5. Intervals of Posterior Probabilities [122] --
12.6. Asymptotic Behavior of Posterior Intervals [123] --
12.7. Asymptotic Intervals under Asymptotic Normality [124] --
12.8. A More General Range of Probabilities [125] --
12.9. Problems [126] --
12.10. References [126] --
CHAPTER [13] --
Nonparametric Bayes Procedures [127] --
13.0. Introduction [127] --
13.1. The Dirichlet Process [127] --
13.2 The Dirichlet Process on (0,1) [130] --
13.3. Bayes Theorem for a Dirichlet Process [131] --
13.4. The Empirical Process [132] --
13.5. Subsample Methods [133] --
13.6. The Tolerance Process [134] --
13.7. Problems [134] --
13.8. References [135] --
Author Index [137] --
Subject Index [141] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha