Reversibility and stochastic networks / F. P. Kelly.
Series Wiley series in probability and mathematical statisticsEditor: Chichester ; New York : Wiley, c1979Descripción: viii, 230 p. : ill. ; 24 cmISBN: 0471276014 :Tema(s): Stochastic processesOtra clasificación: *CODIGO*CHAPTER1 MARKOV PROCESSES AND REVERSIBILITY 1 1.1 Preliminaries on Markov processes 1 1.2 Reversibility 5 1.3 Birth and death processes 10 1.4 The Ehrenfest model 17 1.5 Kolmogorov's criteria 21 1.6 Truncating reversible processes 25 1.7 Reversed processes 27 CHAPTER2 MIGRATION PROCESSES 34 2.1 The output from a simple queue 34 2.2 A series of simple queues 37 2.3 Closed migration processes 40 2.4 Open migration processes 48 CHAPTER3 QUEUEING NETWORKS 57 3.1 General customer routes 57 3.2 Open networks of quasi-reversible queues 65 3.3 Symmetric queues 72 3.4 Closed networks 82 3.5 More general arrival rates 89 CHAPTER4 EXAMPLES OF QUEUEING NETWORKS 95 4.1 Communication networks 95 4.2 Machine interference 99 4.3 Timesharing computers 105 4.4 Teletraffic models 108 4.5 Compartmental models 113 4.6 Miscellaneous applications 117 CHAPTER5 ELECTRICAL ANALOGUES 125 5.1 Random walks 125 5.2 Flow models 128 5.3 Invasion models 132 CHAPTER 6 REVERSIBLE MIGRATION PROCESSES 135 6.1 Migration processes revisited 135 6.2 Social grouping behaviour 138 6.3 Contrasting flow models 140 CHAPTER 7 POPULATION GENETICS MODELS 145 7.1 Neutral allele models 145 7.2The age of an allele 145 7.3 Fixation times 156 CHAPTER 8 CLUSTERING PROCESSES161 8.1 Introduction 161 8.2 The basic model 162 8.3 Examples 167 8.4 Polymerization processes 173 8.5 Generalizations 180 CHAPTER 9 SPATIAL PROCESSES 184 9.1 Markov fields 184 9.2 Reversible spatial processes 189 9.3 A general spatial process 193 9.4 Partial balance 200 References 212 Symbol Index 223 Subject Index 227
Item type | Home library | Shelving location | Call number | Materials specified | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
![]() |
Instituto de Matemática, CONICET-UNS | Libros ordenados por tema | 60 K29 (Browse shelf) | Available | A-9352 |
Includes indexes.
Bibliografía: p. 212-222.
CHAPTER1 MARKOV PROCESSES AND REVERSIBILITY 1
1.1 Preliminaries on Markov processes 1
1.2 Reversibility 5
1.3 Birth and death processes 10
1.4 The Ehrenfest model 17
1.5 Kolmogorov's criteria 21
1.6 Truncating reversible processes 25
1.7 Reversed processes 27
CHAPTER2 MIGRATION PROCESSES 34
2.1 The output from a simple queue 34
2.2 A series of simple queues 37
2.3 Closed migration processes 40
2.4 Open migration processes 48
CHAPTER3 QUEUEING NETWORKS 57
3.1 General customer routes 57
3.2 Open networks of quasi-reversible queues 65
3.3 Symmetric queues 72
3.4 Closed networks 82
3.5 More general arrival rates 89
CHAPTER4 EXAMPLES OF QUEUEING NETWORKS 95
4.1 Communication networks 95
4.2 Machine interference 99
4.3 Timesharing computers 105
4.4 Teletraffic models 108
4.5 Compartmental models 113
4.6 Miscellaneous applications 117
CHAPTER5 ELECTRICAL ANALOGUES 125
5.1 Random walks 125
5.2 Flow models 128
5.3 Invasion models 132
CHAPTER 6 REVERSIBLE MIGRATION PROCESSES 135
6.1 Migration processes revisited 135
6.2 Social grouping behaviour 138
6.3 Contrasting flow models 140
CHAPTER 7 POPULATION GENETICS MODELS 145
7.1 Neutral allele models 145
7.2The age of an allele 145
7.3 Fixation times 156
CHAPTER 8 CLUSTERING PROCESSES161
8.1 Introduction 161
8.2 The basic model 162
8.3 Examples 167
8.4 Polymerization processes 173
8.5 Generalizations 180
CHAPTER 9 SPATIAL PROCESSES 184
9.1 Markov fields 184
9.2 Reversible spatial processes 189
9.3 A general spatial process 193
9.4 Partial balance 200
References 212
Symbol Index 223
Subject Index 227
MR, REVIEW #
There are no comments on this title.