Probability and random processes / G.R. Grimmett, D.R. Stirzaker.

Por: Grimmett, GeoffreyColaborador(es): Stirzaker, DavidEditor: Oxford : New York : Clarendon Press ; Oxford University Press, c1992Edición: 2nd edDescripción: xii, 541 p. : ill. ; 24 cmISBN: 0198536666 :; 0198536658 (pbk.) :Tema(s): Probabilities | Stochastic processesOtra clasificación: *CODIGO* Recursos en línea: Publisher description | Table of contents only
Contenidos:
1 1.1 Events and their probabilities Introduction1
1.2 Events as sets [1]
1.3 Probability [4]
1.4 Conditional probability: a fundamental lemma [8]
1.5 Independence [13]
1.6 Completeness and product spaces [14]
1.7 Worked examples [16]
1.8 Problems [21]
2 Random variables and their distributions
2.1 Random variables [25]
2.2 The law of averages [29]
2.3 Discrete and continuous variables [32]
2.4 Worked examples [35]
2.5 Random vectors [38]
2.6 Monte Carlo simulation [41]
2.7 Problems [43]
3 Discrete random variables
3.1 Probability mass functions [46]
3.2 Independence [47]
3.3 Expectation [50]
3.4 Indicators and matching [56]
3.5 Examples of discrete variables [60]
3.6 Dependence [62]
3.7 Conditional distributions and conditional expectation [67]
3.8 Sums of random variables [70]
3.9 Simple random walk [71]
3.10 Random walk: counting sample paths [75]
3.11 Problems [83]
4 Continuous random variables
4.1 Probability density functions [89]
4.2 Independence [91]
4.3 Expectation [92]
4.4 Examples of continuous variables [94]
4.5 Dependence [98]
4.6 Conditional distributions and conditional expectation [103]
4.7 Functions of random variables [107]
4.8 Sums of random variables [113]
4.9 Multivariate normal distribution [114]
4.10 Distributions arising from the normal distribution [118]
4.11 Problems [121]
5 5.1Generating functions and their applications Generating functions [127]
5.2 Some applications [135]
5.3 Random walk [141]
5.4 Branching processes [150]
5.5 Age-dependent branching processes [155]
5.6 Expectation revisited [158]
5.7 Characteristic functions [162]
5.8 Examples of characteristic functions [167]
5.9 Inversion and continuity theorems [170]
5.10 Two limit theorems [174]
5.11 Large deviations [183]
5.12 Problems [187]
6 Markov chains
6.1 Markov processes [194]
6.2 Classification of states [201]
6.3 Classification of chains [204]
6.4 Stationary distributions and the limit theorem [207]
6.5 Time-reversibility [218]
6.6 Chains with finitely many states [221]
6.7 Branching processes revisited [224]
6.8 Birth processes and the Poisson process [228]
6.9 Continuous-time Markov chains [239]
6.10 Uniform semigroups [246]
6.11 Birth-death processes and imbedding [249]
6.12 Special processes [256]
6.13 Problems [264]
7 Convergence of random variables
7.1 Introduction [271]
7.2 Modes of convergence [274]
7.3 Some ancillary results [285]
7.4 Laws of large numbers [293]
7.5 The strong law [297]
7.6 The law of the iterated logarithm [301]
7.7 Martingales [302]
7.8 Martingale convergence theorem [309]
7.9 Prediction and conditional expectation [314]
7.10 Uniform integrability [322]
7.11 Problems [326]
8 Random processes
8.1 Introduction [332]
8.2 Stationary processes [333]
8 3 Renewal processes [337]
8.4 Queues [340]
8.5 The Wiener process [342]
8.6 What is in a name? [343]
8.7 Problems [346]
9 Stationary processes
9.1 Introduction [347]
9.2 Linear prediction [349]
9.3 Autocovariances and spectra [352]
9.4 Stochastic integration and the spectral representation [360]
9.5 The ergodic theorem [367]
9.6 Gaussian processes [380]
9.7 Problems [384]
10 Renewals
10.1 The renewal equation [388]
10.2 Limit theorems [393]
10.3 Excess life [398]
10.4 Applications [401]
10.5 Problems [410]
11 Queues
11.1 Single-server queues [414]
11.2 M/M/1 [416]
11.3 M/G/1 [420]
11.4 G/M/1 [427]
11.5 G/G/1 [431]
11.6 Heavy traffic [438]
11.7 Problems [439]
12 Martingales
12.1 Introduction [443]
12.2 Martingale differences and Hoeffding’s inequality [448]
12.3 Crossings and convergence [453]
12.4 Stopping times [459]
12.5 Optional stopping [464]
12.6 The maximal inequality [469]
12.7 Backward martingales and continuous-time martingales [472]
12.8 Some examples [477]
12.9 Problems [482]
13 Diffusion processes
13.1 Introduction [487]
13.2 Brownian motion [487]
13.3 Diffusion processes [490]
13.4 First passage times [500]
13.5 Barriers [505]
13.6 Excursions, and the Brownian bridge [509]
13,7 Potential theory [512]
13.8 Problems [518]
Appendix 1. Foundations and notation [521]
Appendix II. Further reading [526]
Appendix III. History and varieties of probability [527]
Appendix IV. John Arbuthnot's Preface to Of the laws of chance (1692) [529]
Bibliography [532]
List of notation [534]
Index [535]
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 60 G864-2 (Browse shelf) Available A-9338

Includes bibliographical references (p.[532]-533) and index.

1 1.1 Events and their probabilities Introduction1 --
1.2 Events as sets [1] --
1.3 Probability [4] --
1.4 Conditional probability: a fundamental lemma [8] --
1.5 Independence [13] --
1.6 Completeness and product spaces [14] --
1.7 Worked examples [16] --
1.8 Problems [21] --
2 Random variables and their distributions --
2.1 Random variables [25] --
2.2 The law of averages [29] --
2.3 Discrete and continuous variables [32] --
2.4 Worked examples [35] --
2.5 Random vectors [38] --
2.6 Monte Carlo simulation [41] --
2.7 Problems [43] --
3 Discrete random variables --
3.1 Probability mass functions [46] --
3.2 Independence [47] --
3.3 Expectation [50] --
3.4 Indicators and matching [56] --
3.5 Examples of discrete variables [60] --
3.6 Dependence [62] --
3.7 Conditional distributions and conditional expectation [67] --
3.8 Sums of random variables [70] --
3.9 Simple random walk [71] --
3.10 Random walk: counting sample paths [75] --
3.11 Problems [83] --
4 Continuous random variables --
4.1 Probability density functions [89] --
4.2 Independence [91] --
4.3 Expectation [92] --
4.4 Examples of continuous variables [94] --
4.5 Dependence [98] --
4.6 Conditional distributions and conditional expectation [103] --
4.7 Functions of random variables [107] --
4.8 Sums of random variables [113] --
4.9 Multivariate normal distribution [114] --
4.10 Distributions arising from the normal distribution [118] --
4.11 Problems [121] --
5 5.1Generating functions and their applications Generating functions [127] --
5.2 Some applications [135] --
5.3 Random walk [141] --
5.4 Branching processes [150] --
5.5 Age-dependent branching processes [155] --
5.6 Expectation revisited [158] --
5.7 Characteristic functions [162] --
5.8 Examples of characteristic functions [167] --
5.9 Inversion and continuity theorems [170] --
5.10 Two limit theorems [174] --
5.11 Large deviations [183] --
5.12 Problems [187] --
6 Markov chains --
6.1 Markov processes [194] --
6.2 Classification of states [201] --
6.3 Classification of chains [204] --
6.4 Stationary distributions and the limit theorem [207] --
6.5 Time-reversibility [218] --
6.6 Chains with finitely many states [221] --
6.7 Branching processes revisited [224] --
6.8 Birth processes and the Poisson process [228] --
6.9 Continuous-time Markov chains [239] --
6.10 Uniform semigroups [246] --
6.11 Birth-death processes and imbedding [249] --
6.12 Special processes [256] --
6.13 Problems [264] --
7 Convergence of random variables --
7.1 Introduction [271] --
7.2 Modes of convergence [274] --
7.3 Some ancillary results [285] --
7.4 Laws of large numbers [293] --
7.5 The strong law [297] --
7.6 The law of the iterated logarithm [301] --
7.7 Martingales [302] --
7.8 Martingale convergence theorem [309] --
7.9 Prediction and conditional expectation [314] --
7.10 Uniform integrability [322] --
7.11 Problems [326] --
8 Random processes --
8.1 Introduction [332] --
8.2 Stationary processes [333] --
8 3 Renewal processes [337] --
8.4 Queues [340] --
8.5 The Wiener process [342] --
8.6 What is in a name? [343] --
8.7 Problems [346] --
9 Stationary processes --
9.1 Introduction [347] --
9.2 Linear prediction [349] --
9.3 Autocovariances and spectra [352] --
9.4 Stochastic integration and the spectral representation [360] --
9.5 The ergodic theorem [367] --
9.6 Gaussian processes [380] --
9.7 Problems [384] --
10 Renewals --
10.1 The renewal equation [388] --
10.2 Limit theorems [393] --
10.3 Excess life [398] --
10.4 Applications [401] --
10.5 Problems [410] --
11 Queues --
11.1 Single-server queues [414] --
11.2 M/M/1 [416] --
11.3 M/G/1 [420] --
11.4 G/M/1 [427] --
11.5 G/G/1 [431] --
11.6 Heavy traffic [438] --
11.7 Problems [439] --
12 Martingales --
12.1 Introduction [443] --
12.2 Martingale differences and Hoeffding’s inequality [448] --
12.3 Crossings and convergence [453] --
12.4 Stopping times [459] --
12.5 Optional stopping [464] --
12.6 The maximal inequality [469] --
12.7 Backward martingales and continuous-time martingales [472] --
12.8 Some examples [477] --
12.9 Problems [482] --
13 Diffusion processes --
13.1 Introduction [487] --
13.2 Brownian motion [487] --
13.3 Diffusion processes [490] --
13.4 First passage times [500] --
13.5 Barriers [505] --
13.6 Excursions, and the Brownian bridge [509] --
13,7 Potential theory [512] --
13.8 Problems [518] --
Appendix 1. Foundations and notation [521] --
Appendix II. Further reading [526] --
Appendix III. History and varieties of probability [527] --
Appendix IV. John Arbuthnot's Preface to Of the laws of chance (1692) [529] --
Bibliography [532] --
List of notation [534] --
Index [535] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha