Normal view

## A source book in mathematics, 1200-1800 / edited by D. J. Struik.

Editor: Cambridge, Mass. : Harvard University Press, 1969Descripción: xiv, 427 p. : il. ; 26 cmOtra clasificación: 01-06 (01-01 01A35 01A40 01A45 01A50)
Contenidos:
```CHAPTER I ARITHMETIC
Introduction [1]
1. Leonardo of Pisa. The rabbit problem [2]
2. Recorde. Elementary arithmetic [4]
3. Stevin. Decimal fractions [7]
4. Napier. Logarithms [11]
5. Pascal. The Pascal triangle [21]
6. Fermat. Two Fermat theorems and Fermat numbers [26]
7. Fermat. The “Pell” equation [29]
8. Euler. Power residues [31]
9. Euler. Fermat’s theorem for n = 3, 4 [36]
10. Euler. Quadratic residues and the reciprocity theorem [40]
11. Goldbach. The Goldbach theorem [47]
12. Legendre. The reciprocity theorem [49]
CHAPTER II ALGEBRA
Introduction [55]
2. Chuquet. The triparty [60]
3. Cardan. On cubic equations [62]
4. Ferrari. The biquadratic equation [69]
5. Viète. The new algebra [74]
6. Girard. The fundamental theorem of algebra [81]
7. Descartes. The new method [87]
8. Descartes. Theory of equations [89]
9. Newton. The roots of an equation [93]
10. Euler. The fundamental theorem of algebra [99]
11. Lagrange. On the general theory of equations [102]
12. Lagrange. Continued fractions [111]
13. Gauss. The fundamental theorem of algebra [115]
14. Leibniz. Mathematical logic [123]
CHAPTER III GEOMETRY
Introduction [133]
1. Oresme. The latitude of forms [134]
2. Regiomontanus. Trigonometry [138]
3. Fermat. Coordinate geometry [143]
4. Descartes. The principle of nonhomogeneity [150]
5. Descartes. The equation of a curve [155]
6. Desargues. Involution and perspective triangles [157]
7. Pascal. Theorem on conics [163]
8. Newton. Cubic curves [168]
9. Agnesi. The versiera [178]
10. Cramer and Euler. Cramer’s paradox [180]
11. Euler. The Bridges of Königsberg [183]
CHAPTER IV ANALYSIS BEFORE NEWTON AND LEIBNIZ
Introduction [188]
1. Stevin. Centers of gravity [189]
2. Kepler. Integration methods [192]
3. Galilei. On infinites and infinitesimals [198]
4. Galilei. Accelerated motion [208]
5. Cavalieri. Principle of Cavalieri [209]
6. Cavalieri. Integration [214]
7. Fermat. Integration [219]
8. Fermat. Maxima and minima [222]
9. Torricelli. Volume of an infinite solid [227]
10. Roberval. The cycloid [232]
11. Pascal. The integration of sines [238]
12. Pascal. Partial integration [241]
13. Wallis. Computation of π by successive interpolations [244]
14. Barrow. The fundamental theorem of the calculus [253]
15. Huygens. Evolutes and involutes [263]
CHAPTER V NEWTON, LEIBNIZ, AND THEIR SCHOOL
Introduction [270]
1. Leibniz. The first publication of his differential calculus [271]
2. Leibniz. The first publication of his integral calculus [281]
3. Leibniz. The fundamental theorem of the calculus [282]
4. Newton and Gregory. Binomial series [284]
5. Newton. Prime and ultimate ratios [291]
6. Newton. Genita and moments [300]
7. Newton. Quadrature of curves [303]
8. L’Hopital. The analysis of the infinitesimally small [312]
9. Jakob Bernoulli. Sequences and series [316]
10. Johann Bernoulli. Integration [324]
11. Taylor. The Taylor series [328]
12. Berkeley. The Analyst [333]
13. Maclaurin. On series and extremes [338]
14. D’Alembert. On limits [341]
15. Euler. Trigonometry [345]
16. D’Alembert, Euler, Daniel Bernoulli. The vibrating string and its partial differential equation [351]
17. Lambert. Irrationality of π [369]
18. Fagnano and Euler. Addition theorem of elliptic integrals [374]
19. Euler, Landen, Lagrange. The metaphysics of the calculus [383]
20. Johann and Jakob Bernoulli. The brachystochrone [391]
21. Euler. The calculus of variations [399]
22. Lagrange. The calculus of variations [406]
23. Monge. The two curvatures of a curved surface [413]
INDEX [421]```
Item type Home library Call number Materials specified Status Date due Barcode Course reserves
Libros
01 So724 (Browse shelf) Available A-8022

Incluye referencias bibliográficas.

CHAPTER I ARITHMETIC --
Introduction [1] --
1. Leonardo of Pisa. The rabbit problem [2] --
2. Recorde. Elementary arithmetic [4] --
3. Stevin. Decimal fractions [7] --
4. Napier. Logarithms [11] --
5. Pascal. The Pascal triangle [21] --
6. Fermat. Two Fermat theorems and Fermat numbers [26] --
7. Fermat. The “Pell” equation [29] --
8. Euler. Power residues [31] --
9. Euler. Fermat’s theorem for n = 3, 4 [36] --
10. Euler. Quadratic residues and the reciprocity theorem [40] --
11. Goldbach. The Goldbach theorem [47] --
12. Legendre. The reciprocity theorem [49] --
CHAPTER II ALGEBRA --
Introduction [55] --
1. Al-Khwarizmi. Quadratic equations [55] --
2. Chuquet. The triparty [60] --
3. Cardan. On cubic equations [62] --
4. Ferrari. The biquadratic equation [69] --
5. Viète. The new algebra [74] --
6. Girard. The fundamental theorem of algebra [81] --
7. Descartes. The new method [87] --
8. Descartes. Theory of equations [89] --
9. Newton. The roots of an equation [93] --
10. Euler. The fundamental theorem of algebra [99] --
11. Lagrange. On the general theory of equations [102] --
12. Lagrange. Continued fractions [111] --
13. Gauss. The fundamental theorem of algebra [115] --
14. Leibniz. Mathematical logic [123] --
CHAPTER III GEOMETRY --
Introduction [133] --
1. Oresme. The latitude of forms [134] --
2. Regiomontanus. Trigonometry [138] --
3. Fermat. Coordinate geometry [143] --
4. Descartes. The principle of nonhomogeneity [150] --
5. Descartes. The equation of a curve [155] --
6. Desargues. Involution and perspective triangles [157] --
7. Pascal. Theorem on conics [163] --
8. Newton. Cubic curves [168] --
9. Agnesi. The versiera [178] --
10. Cramer and Euler. Cramer’s paradox [180] --
11. Euler. The Bridges of Königsberg [183] --
CHAPTER IV ANALYSIS BEFORE NEWTON AND LEIBNIZ --
Introduction [188] --
1. Stevin. Centers of gravity [189] --
2. Kepler. Integration methods [192] --
3. Galilei. On infinites and infinitesimals [198] --
4. Galilei. Accelerated motion [208] --
5. Cavalieri. Principle of Cavalieri [209] --
6. Cavalieri. Integration [214] --
7. Fermat. Integration [219] --
8. Fermat. Maxima and minima [222] --
9. Torricelli. Volume of an infinite solid [227] --
10. Roberval. The cycloid [232] --
11. Pascal. The integration of sines [238] --
12. Pascal. Partial integration [241] --
13. Wallis. Computation of π by successive interpolations [244] --
14. Barrow. The fundamental theorem of the calculus [253] --
15. Huygens. Evolutes and involutes [263] --
CHAPTER V NEWTON, LEIBNIZ, AND THEIR SCHOOL --
Introduction [270] --
1. Leibniz. The first publication of his differential calculus [271] --
2. Leibniz. The first publication of his integral calculus [281] --
3. Leibniz. The fundamental theorem of the calculus [282] --
4. Newton and Gregory. Binomial series [284] --
5. Newton. Prime and ultimate ratios [291] --
6. Newton. Genita and moments [300] --
7. Newton. Quadrature of curves [303] --
8. L’Hopital. The analysis of the infinitesimally small [312] --
9. Jakob Bernoulli. Sequences and series [316] --
10. Johann Bernoulli. Integration [324] --
11. Taylor. The Taylor series [328] --
12. Berkeley. The Analyst [333] --
13. Maclaurin. On series and extremes [338] --
14. D’Alembert. On limits [341] --
15. Euler. Trigonometry [345] --
16. D’Alembert, Euler, Daniel Bernoulli. The vibrating string and its partial differential equation [351] --
17. Lambert. Irrationality of π [369] --
18. Fagnano and Euler. Addition theorem of elliptic integrals [374] --
19. Euler, Landen, Lagrange. The metaphysics of the calculus [383] --
20. Johann and Jakob Bernoulli. The brachystochrone [391] --
21. Euler. The calculus of variations [399] --
22. Lagrange. The calculus of variations [406] --
23. Monge. The two curvatures of a curved surface [413] --
INDEX [421] --

MR, 39 #11

There are no comments on this title.