Diffusions, Markov processes, and martingales / David Williams.

Por: Williams, D. (David), 1938-Colaborador(es): Rogers, L. C. GSeries Wiley series in probability and mathematical statisticsEditor: Chichester : Wiley, c1979-c1987Descripción: 2 v. ; 24 cmISBN: 0471997056 (v. 1); 0471914827 (v. 2)Tema(s): Markov processes | Diffusion processes | Martingales (Mathematics)Otra clasificación: 60J25 | 60J60 (60G07 60H05 60J25)
Contenidos incompletos:
Vol. 1

CHAPTER I. INTRODUCTION TO BROWNIAN MOTION --
1. WIENER MEASURE (§§ 1-29) [1] --
Wiener’s theorem (§ 6); A converse (9); Diffusions (10); Canonical and non-canonical processes (11-14); Martingale descriptions of Brownian motion (15-17); Levy’s theorem (17); Trotter’s theorem (18-20); Local and global properties (21-26); Blumenthal’s 01 law (23); Kolmogorov’s test (24); Iterated-logarithm law (25); Holder condition (26); Completions, almost surely (P) (27-29). --
2. NARROW CONVERGENCE (30-52) [18] --
Donsker invariance principle (30-39); Polish spaces (36); Narrow convergence of measures (37); Prohorov’s theorem (40-47); Narrow convergence in Pr( W) (48-52). --
3. BROWNIAN MOTION IN R" (53-66) [29] --
Potential theory (58-62); Equilibrium potential (59); Bessel processes (63-66); Skew product (64); Ray-Knight theorem on local time (65). --
CHAPTER II. SOME CLASSICAL THEORY --
1. BASIC MEASURE THEORY (1-14) [39] --
Monotone-class theorems (1-5, 13—14); Daniell-Kolmogorov theorem (6); Its limitations (7); Fubini’s theorem (8); Infinite products (9); Poisson measures (10); Stochastic process (11); Modification (12). --
2. CLASSICAL MARTINGALE THEORY (15-55) [50] --
Uniform integrability (15-20); Conditional expectations and probabilities (21-24); Discrete-parameter martingales (23-34); Continuous-parameter supermartingales (35-55); Basic definitions (36); Skorokhod (càdlàg) maps (37); Doob’s regularity theorem (38-41); The ‘usual conditions’ (40); Indistinguishability, evanescence (42); Inequalities and the convergence theorem (43); Stopping times (44-50); Debut and section theorems (51-52); Stopping times and supcrmartingales (53-55). --
3. APPLICATIONS (56-67) [81] --
Proof of Wiener's theorem (56); Strong Markov theorem for Brownian motion (57); Hitting-times, reflection principle, etc. (58— 61); Levy's downcrossing theorem (62); Local time (63); Hitting-time process as subordinator (64); Pitman’s presentation of 3-dimensional Bessel process (65); Excursion theory (66-67). --
4 REGULAR CONDITIONAL PROBABILITIES (68-72) [100] --
Mam theorem (69); Fundamental statements of Markov property (72). --
CHAPTER III. MARKOV PROCESSES --
1. TRANSITION FUNCTIONS AND RESOLVENTS (1-6) [106] --
Definitions (1—2); Hille-Yosida theorems (3-6) --
2. FELLER TRANSITION FUNCTIONS (7-10) [114] --
Feller—Dynkin (FD) semigroups (8); Dynkin’s maximum principle --
3. FELLER-DYNKIN PROCESSES (11-31) [117] --
Path regularization (13); Canonical FD process (14); Strong Markov theorem for FD processes (15—17); Completions (16); Blumenthal’s 01 law (18); Some fundamental martingales, Dynkin’s formula (22); Quasi-left-continuity (23); Characteristic operator (24); FD diffusions (26—29); Dirichlet problem (30). --
4. ADDITIVE FUNCTIONALS (32-42) [141] --
Some basic facts about PCHAFs (32—34); Killing (35-36); Timesubstitution (37); Volkonskii’s formula. Arcsine law, Feller-McKean chain (38); Feynman—Kac formula (39); A Ciesielski-Taylor theorem (40); Elastic Brownian motion (41). --
5. RAY PROCESSES (43-66) [162] --
Motivation (43—54); Martin boundary theory for discrete-parameter chains (48); Probabilistic Doob-Hunt theory (discrete-parameter chains) (49); R. S. Martin’s boundary (50); Doob-Hunt theory for Brownian motion (51); Ray’s theorem: preparatory remarks (55-56): Ray—Knight compactification (57); Ray resolvents (58); Ray’s theorem: analytic part (59-62); Branch-points (60); Ray’s theorem: probabilistic part (63-66); Strong Markov theorem for Ray processes (64); The r61e of branch-points (65). --
6. APPLICATIONS (67-91) [198] --
Martin boundary theory in retrospect (68-73); Proof of the Doob-Hunt convergence theorem (70); Choquet representation of excessive functions (71); Doob’s A-transforms (72); Time-reversal and related topics (74-79); Nagasawa’s formula (75); Strong Markov property under time-reversal (76); Equilibrium charge (77); Split-ting-times (79); A first look at chain theory (80-91); Chains as Ray processes (81); Taboo probabilities; first-entrance decompositions (83); The Q-matrix: DK conditions (84); Local character condition for Q (85); Totally instantaneous Q-matrices (86); Last exits (87); Excursions (88); Kingman’s solution of the Markov characterization problem (89); Q-matrix problem: symmetrizable case (90). --
REFERENCES [229] --
INDEX [235] --
Vol. 2

CHAPTER IV. INTRODUCTION TO ITO CALCULUS --
TERMINOLOGY AND CONVENTIONS --
R-processes and L-processes --
Usual conditions --
Important convention about time [0] --
1. SOME MOTIVATING REMARKS --
1. Ito integrals................... [2] --
2 Integration by parts ................ [4] --
3. Ito’s formula for Brownian motion ...........8 --
4. A rough plan of the chapter ............. [9] --
2 SOME FUNDAMENTAL IDEAS: PREVISIBLE PROCESSES, LOCALIZATION, etc. --
Previsible processes --
5. Basic integrands Z(S, 7*J ..............10 --
6. Previsible processes on ................11 --
Finite-variation and integrable-variation processes --
7. FV0 and IV0 processes ...............14 --
8. Preservation of the martingale property .........14 --
Localization --
9. H(0, T],Xr...................................15 --
10. Localization of integrands, Ib...............16 --
11. Localization of integrators, FV^T etc........17 --
12. Nil desperandum!.............................18 --
13. Extending stochastic integrals by localization [20] --
14. Local martingales, and the Fatou lemma.........21 --
Semimartingales as integrators --
15. Semimartingales,...............................23 --
16. Integrators....................................24 --
Likelihood ratios --
17. Martingale property under change of measure.....25 --
3. THE ELEMENTARY THEORY OF FINITE-VARIATION PROCESSES --
18. Ito’s formula for FV functions [27] --
19. The Doleans exponential F (x.) ............ [29] --
Applications to Markov chains with finite state-space --
20. Martingale problems................ [30] --
21. Probabilistic interpretation of Q....... [33] --
22. Likelihood ratios and some key distributions ....... [37] --
4. STOCHASTIC INTEGRALS: THE L2 THEORY --
23. Orientation ................... [42] --
24. Stable spaces of ........... [42] --
25. Elementary stochastic integrals relative to . . . . [45] --
26. The processes ............ [46] --
27. Constructing stochastic integrals in L2 [47] --
28. The Kunita-Watanabe inequalities........... [50] --
5. STOCHASTIC INTEGRALS WITH RESPECT TO --
CONTINUOUS SEMIMARTINGALES --
29. Orientation ................... [52] --
30. Quadratic variation for continuous local martingales . . . . [52] --
31. Canonical decomposition of a continuous semimartingale. . . [57] --
32. Ito’s formula for continuous semimartingales ....... [58] --
6. APPLICATIONS OF ITO’s FORMULA --
33. Levy’s theorem........... . ...... [63] --
34. Continuous local martingales as time-changes of Brownian --
motion . [64] --
35. Bessel processes; skew products; etc. [69] --
36. Brownian martingale representation ......... [73] --
37. Exponential semimartingales; estimates ....... . . [75] --
38. Cameron-Martin-Girsanov change of measure ...... [79] --
39. First applications: Doob ^-transforms; hitting of spheres; etc. . [83] --
40. Further applications: bridges; excursions; etc........ [86] --
41. Explicit Brownian martingale representation ....... [89] --
42. Burkholder-Davis-Gundy inequalities . . . ...... [93] --
43. Semimartingale local time; Tanaka's formula ....... [95] --
44. Study of joint continuity ........... . . . [99] --
45. Local time as an occupation density; generalized Ito-Tanaka --
formula . . [102] --
46. The Stratonovich calculus [106] --
47. Ricmann-sum approximation to ltd and Stratonovich integrals; --
simulation [108] --
CHAPTER V. STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSIONS --
I. INTRODUCTION --
I. What is a diffusion in R*? [110] --
2 FD diffusions recalled [112] --
3. SDEs as a means of constructing diffusions ........ [113] --
4 Example: Brownian motion on a surface [114] --
5. Examples: modelling noise in physical systems....... [114] --
6. Example: Skorokhod’s equation ............ I17 --
7. Examples: control problems ............. [119] --
2 PATHWISE UNIQUENESS, STRONG SDEs, FLOWS --
8. Our general SDE; previsible path functionals; diffusion SDEs [122] --
9. Pathwise uniqueness; exact SDEs ........... [124] --
10. Relationship between exact SDEs and strong solutions. . . . [125] --
11. The Ito existence and uniqueness result ......... [128] --
12 Locally Lipschitz SDEs; Lipschitz properties of a,1/2 . [132] --
13. Flows; the diffeomorphism theorem; time-reversed flows . . . [136] --
14. Carverhill’s noisy North-South flow on a circle ...... [141] --
15. The martingale optimality principle in control....... [144] --
3. WEAK SOLUTIONS, UNIQUENESS IN LAW --
16. Weak solutions of SDEs; Tanaka's SDE ......... [149] --
17. ‘Exact equals weak plus pathwise unique* ........ [151] --
18. Tsirel’son’s example ................ [155] --
4. MARTINGALE PROBLEMS, MARKOV PROPERTY --
19. Definition; orientation ............... [158] --
20. Equivalence of the martingale-problem and ‘weak’ formulations [160] --
21. Martingale problems and the strong Markov property . . . . 162 22 Appraisal and consolidation: where we have reached . . . . [163] --
23. Existence of solutions to the martingale problem ...... [166] --
24. The Stroock-Varadhan uniqueness theorem ....... [170] --
25. Martingale representation ........... . [173] --
Transformation of SDEs --
26. Change of time scale; Girsanov’s SDE [175] --
27. Change of measure ......... [177] --
28. Change of state-space; scale; Zvonkin’s observation; the Doss- --
Sussmann method................. [178] --
29. Krylov's example . [181] --
5. OVERTURE TO STOCHASTIC DIFFERENTIAL GEOMETRY --
30. Introduction; some key ideas; Stratonovich-to-Itd conversion [182] --
31. Brownian motion on a submanifold of R" [186] --
CHAPTER V. STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSIONS --
I. INTRODUCTION --
I. What is a diffusion in R*? [110] --
2 FD diffusions recalled [112] --
3. SDEs as a means of constructing diffusions ........ [113] --
4 Example: Brownian motion on a surface [114] --
5. Examples: modelling noise in physical systems....... [114] --
6. Example: Skorokhod’s equation ............ I17 --
7. Examples: control problems ............. [119] --
2 PATHWISE UNIQUENESS, STRONG SDEs, FLOWS --
8. Our general SDE; previsible path functionals; diffusion SDEs [122] --
9. Pathwise uniqueness; exact SDEs ........... [124] --
10. Relationship between exact SDEs and strong solutions. . . . [125] --
11. The Ito existence and uniqueness result ......... [128] --
12 8. ITO EXCURSION THEORY --
Locally Lipschitz SDEs; Lipschitz properties of a,1/2 . [132] --
13. Flows; the diffeomorphism theorem; time-reversed flows . . . [136] --
14. Carverhill’s noisy North-South flow on a circle ...... [141] --
15. The martingale optimality principle in control....... [144] --
3. WEAK SOLUTIONS, UNIQUENESS IN LAW --
16. Weak solutions of SDEs; Tanaka's SDE ......... [149] --
17. ‘Exact equals weak plus pathwise unique* ........ [151] --
18. Tsirel’son’s example ................ [155] --
4. MARTINGALE PROBLEMS, MARKOV PROPERTY --
19. Definition; orientation ............... [158] --
20. Equivalence of the martingale-problem and ‘weak’ formulations [160] --
21. Martingale problems and the strong Markov property . . . . 162 22 Appraisal and consolidation: where we have reached . . . . [163] --
23. Existence of solutions to the martingale problem ...... [166] --
24. The Stroock-Varadhan uniqueness theorem ....... [170] --
25. Martingale representation ........... . [173] --
Transformation of SDEs --
26. Change of time scale; Girsanov’s SDE [175] --
27. Change of measure ......... [177] --
28. Change of state-space; scale; Zvonkin’s observation; the Doss- --
Sussmann method................. [178] --
29. Krylov's example . [181] --
5. OVERTURE TO STOCHASTIC DIFFERENTIAL GEOMETRY --
30. Introduction; some key ideas; Stratonovich-to-Itd conversion [182] --
31. Brownian motion on a submanifold of R" [186] --
32. Parallel displacement; Riemannian connections [193] --
33. Extrinsic theory of BM^'fOfl)); rolling without slipping; martingales on manifolds; etc. [198] --
34. Intrinsic theory; normal coordinates; structural equations; diffusions on manifolds; etc. [203] --
35. Brownian motion on Lie groups ...... [224] --
36. Dynkin’s Brownian motion of ellipses; hyperbolic space interpretation; etc. . . [239] --
37. Khasminskii's method for studying stability; random vibrations. [246] --
38. Hormander’s theorem; Malliavin calculus; stochastic pullback; --
curvature.................. [250] --
6. ONE-DIMENSIONAL SDEs --
39. A local-time criterion for pathwise uniqueness [263] --
40. The Yamada-Watanabe pathwise uniqueness theorem .... [265] --
41. The Nakao pathwise-uniqueness theorem ........ [266] --
42. Solution of a variance control problem ......... [267] --
43. A comparison theorem ............... [269] --
7. ONE-DIMENSIONAL DIFFUSIONS --
44. Orientation ................... [270] --
45. Regular diffusions. [271] --
46. The scale function, s ................ [273] --
47. The speed measure, m; time substitution ......... [276] --
48. Example: the Bessel SDE . * ............. [284] --
49. Diffusion local time ........... '..... [289] --
50. Analytical aspects................. [291] --
51. Classification of boundary points ........... [295] --
52. Khasminskii’s test for explosions ........... [297] --
53. An ergodic theorem for 1-dimensional diffusions ...... [300] --
54. Coupling of 1-dimensional diffusions .......... [301] --
CHAPTER VI. THE GENERAL THEORY --
1 ORIENTATION --
1. Preparatory remarks [304] --
2. Levy processes [308] --
2. DEBUT AND SECTION THEOREMS --
3. Progressive processes ............... [313] --
4. Optional processes,^; optional times. . . . . . . . . . [315] --
5. The ‘optional’ section theorem ............ [317] --
6. Wanting (not to be skipped) ....... ...... [318] --
3. OPTIONAL PROJECTIONS AND FILTERING --
7. Optional projection "X of X --
8. The innovations approach to filtering --
9. The Kalman- Bucy filter --
10. The Bayesian approach to filtering; a change-detection filter . . --
11. Robust filtering --
4. CHARACTERIZING PREVISIBLE TIMES --
12. Previsible stopping times; PFA theorem ......... --
13. Totally inaccessible and accessible stopping times --
14. Some examples.................. --
15. Meyer’s previsibility theorem for Markov processes . . . . . --
16. Proof of the PFA theorem.............. --
17. The a-algebras --
18. Quasi-left-continuous filtrations ............ --
5. DUAL PREVISIBLE PROJECTIONS --
19. The previsible section theorem; the previsible projection pX --
of x ..................... [347] --
20. Doleans’ characterization of FV processes [349] --
21. Dual previsible projections, compensators ........ [350] --
22. Cumulative risk ................. [352] --
23. Some Brownian motion examples ........... [354] --
24. Decomposition of a continuous semimartingale ...... [358] --
25. Proof of the basic (u, A) correspondence ......... [359] --
26. Proof of the Doleans ‘optional’ characterization result . . . . [360] --
27. Proof of the Doleans ‘previsible’ characterization result . . [361] --
28. Levy systems for Markov processes [364] --
6. THE MEYER DECOMPOSITION THEOREM --
29. Introduction .' ....... [367] --
30. The Doleans proof of the Meyer decomposition ...... [369] --
31. Regular class (D) submartingales; approximation to compensators [372] --
32. The local form of the decomposition theorem [374] --
33. An L2 bounded local martingale which is not a martingale . . [375] --
34. The process ................. [376] --
35. Last exits and equilibrium charge ........... [377] --
7. STOCHASTIC INTEGRATION: THE GENERAL CASE --
36. The quadratic variation process [M] .......... [382] --
37. Stochastic integrals with respect to local martingales .... [388] --
38. Stochastic integrals with respect to semimartingales [391] --
39. Ito’s formula for semimartingales [394] --
40. Special semimartingales [394] --
41. Quasimartingales [396] --
8. ITO EXCURSION TEHORY --
42. Introduction ............. [398] --
43. Exursion theory for a finite Markov chain [400] --
44. Taking stock [405] --
45. Local time L at a regular extremal point a [406] --
46. Some technical point* hypotheses drones, etc ...... [410] --
47. The Portion point proem of excursions [413] --
48. Markovian character of a [414] --
49. Marking the excursions............... [418] --
50. Last-exit decomposition, calculation of the excursion law n . . [420] --
51. The Skorokhod embedding theorem .......... [423] --
52. Diffusion properties of local time in the space vanable; the --
Ray Knight theorem [428] --
53. Arcsine law for Brownian motion ........... [431] --
54. Resolvent density of a 1-dimensional diffusion ....... [432] --
55. Path decomposition of Brownian motions and of excursions. . [433] --
56. An illustrative calculation .............. [438] --
57. Feller Brownian motions .............. [439] --
58. Example: censoring and reweighting of excursion laws . . . . [442] --
59. Excursion theory by stochastic calculus: McGill’s lemma . . . [445] --
REFERENCES.................... [449] --
INDEX....................... [469] --

    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 60 W721 (Browse shelf) Vol. 1 Available A-4944
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 60 W721 (Browse shelf) Vol. 2 Available A-6434

Autores del vol. 2: L. C. G. Rogers and David Williams.

Incluye referencias bibliográficas e índices.

Vol. 1

CHAPTER I. INTRODUCTION TO BROWNIAN MOTION --
1. WIENER MEASURE (§§ 1-29) [1] --
Wiener’s theorem (§ 6); A converse (9); Diffusions (10); Canonical and non-canonical processes (11-14); Martingale descriptions of Brownian motion (15-17); Levy’s theorem (17); Trotter’s theorem (18-20); Local and global properties (21-26); Blumenthal’s 01 law (23); Kolmogorov’s test (24); Iterated-logarithm law (25); Holder condition (26); Completions, almost surely (P) (27-29). --
2. NARROW CONVERGENCE (30-52) [18] --
Donsker invariance principle (30-39); Polish spaces (36); Narrow convergence of measures (37); Prohorov’s theorem (40-47); Narrow convergence in Pr( W) (48-52). --
3. BROWNIAN MOTION IN R" (53-66) [29] --
Potential theory (58-62); Equilibrium potential (59); Bessel processes (63-66); Skew product (64); Ray-Knight theorem on local time (65). --
CHAPTER II. SOME CLASSICAL THEORY --
1. BASIC MEASURE THEORY (1-14) [39] --
Monotone-class theorems (1-5, 13—14); Daniell-Kolmogorov theorem (6); Its limitations (7); Fubini’s theorem (8); Infinite products (9); Poisson measures (10); Stochastic process (11); Modification (12). --
2. CLASSICAL MARTINGALE THEORY (15-55) [50] --
Uniform integrability (15-20); Conditional expectations and probabilities (21-24); Discrete-parameter martingales (23-34); Continuous-parameter supermartingales (35-55); Basic definitions (36); Skorokhod (càdlàg) maps (37); Doob’s regularity theorem (38-41); The ‘usual conditions’ (40); Indistinguishability, evanescence (42); Inequalities and the convergence theorem (43); Stopping times (44-50); Debut and section theorems (51-52); Stopping times and supcrmartingales (53-55). --
3. APPLICATIONS (56-67) [81] --
Proof of Wiener's theorem (56); Strong Markov theorem for Brownian motion (57); Hitting-times, reflection principle, etc. (58— 61); Levy's downcrossing theorem (62); Local time (63); Hitting-time process as subordinator (64); Pitman’s presentation of 3-dimensional Bessel process (65); Excursion theory (66-67). --
4 REGULAR CONDITIONAL PROBABILITIES (68-72) [100] --
Mam theorem (69); Fundamental statements of Markov property (72). --
CHAPTER III. MARKOV PROCESSES --
1. TRANSITION FUNCTIONS AND RESOLVENTS (1-6) [106] --
Definitions (1—2); Hille-Yosida theorems (3-6) --
2. FELLER TRANSITION FUNCTIONS (7-10) [114] --
Feller—Dynkin (FD) semigroups (8); Dynkin’s maximum principle --
3. FELLER-DYNKIN PROCESSES (11-31) [117] --
Path regularization (13); Canonical FD process (14); Strong Markov theorem for FD processes (15—17); Completions (16); Blumenthal’s 01 law (18); Some fundamental martingales, Dynkin’s formula (22); Quasi-left-continuity (23); Characteristic operator (24); FD diffusions (26—29); Dirichlet problem (30). --
4. ADDITIVE FUNCTIONALS (32-42) [141] --
Some basic facts about PCHAFs (32—34); Killing (35-36); Timesubstitution (37); Volkonskii’s formula. Arcsine law, Feller-McKean chain (38); Feynman—Kac formula (39); A Ciesielski-Taylor theorem (40); Elastic Brownian motion (41). --
5. RAY PROCESSES (43-66) [162] --
Motivation (43—54); Martin boundary theory for discrete-parameter chains (48); Probabilistic Doob-Hunt theory (discrete-parameter chains) (49); R. S. Martin’s boundary (50); Doob-Hunt theory for Brownian motion (51); Ray’s theorem: preparatory remarks (55-56): Ray—Knight compactification (57); Ray resolvents (58); Ray’s theorem: analytic part (59-62); Branch-points (60); Ray’s theorem: probabilistic part (63-66); Strong Markov theorem for Ray processes (64); The r61e of branch-points (65). --
6. APPLICATIONS (67-91) [198] --
Martin boundary theory in retrospect (68-73); Proof of the Doob-Hunt convergence theorem (70); Choquet representation of excessive functions (71); Doob’s A-transforms (72); Time-reversal and related topics (74-79); Nagasawa’s formula (75); Strong Markov property under time-reversal (76); Equilibrium charge (77); Split-ting-times (79); A first look at chain theory (80-91); Chains as Ray processes (81); Taboo probabilities; first-entrance decompositions (83); The Q-matrix: DK conditions (84); Local character condition for Q (85); Totally instantaneous Q-matrices (86); Last exits (87); Excursions (88); Kingman’s solution of the Markov characterization problem (89); Q-matrix problem: symmetrizable case (90). --
REFERENCES [229] --
INDEX [235] --

Vol. 2

CHAPTER IV. INTRODUCTION TO ITO CALCULUS --
TERMINOLOGY AND CONVENTIONS --
R-processes and L-processes --
Usual conditions --
Important convention about time [0] --
1. SOME MOTIVATING REMARKS --
1. Ito integrals................... [2] --
2 Integration by parts ................ [4] --
3. Ito’s formula for Brownian motion ...........8 --
4. A rough plan of the chapter ............. [9] --
2 SOME FUNDAMENTAL IDEAS: PREVISIBLE PROCESSES, LOCALIZATION, etc. --
Previsible processes --
5. Basic integrands Z(S, 7*J ..............10 --
6. Previsible processes on ................11 --
Finite-variation and integrable-variation processes --
7. FV0 and IV0 processes ...............14 --
8. Preservation of the martingale property .........14 --
Localization --
9. H(0, T],Xr...................................15 --
10. Localization of integrands, Ib...............16 --
11. Localization of integrators, FV^T etc........17 --
12. Nil desperandum!.............................18 --
13. Extending stochastic integrals by localization [20] --
14. Local martingales, and the Fatou lemma.........21 --
Semimartingales as integrators --
15. Semimartingales,...............................23 --
16. Integrators....................................24 --
Likelihood ratios --
17. Martingale property under change of measure.....25 --
3. THE ELEMENTARY THEORY OF FINITE-VARIATION PROCESSES --
18. Ito’s formula for FV functions [27] --
19. The Doleans exponential F (x.) ............ [29] --
Applications to Markov chains with finite state-space --
20. Martingale problems................ [30] --
21. Probabilistic interpretation of Q....... [33] --
22. Likelihood ratios and some key distributions ....... [37] --
4. STOCHASTIC INTEGRALS: THE L2 THEORY --
23. Orientation ................... [42] --
24. Stable spaces of ........... [42] --
25. Elementary stochastic integrals relative to . . . . [45] --
26. The processes ............ [46] --
27. Constructing stochastic integrals in L2 [47] --
28. The Kunita-Watanabe inequalities........... [50] --
5. STOCHASTIC INTEGRALS WITH RESPECT TO --
CONTINUOUS SEMIMARTINGALES --
29. Orientation ................... [52] --
30. Quadratic variation for continuous local martingales . . . . [52] --
31. Canonical decomposition of a continuous semimartingale. . . [57] --
32. Ito’s formula for continuous semimartingales ....... [58] --
6. APPLICATIONS OF ITO’s FORMULA --
33. Levy’s theorem........... . ...... [63] --
34. Continuous local martingales as time-changes of Brownian --
motion . [64] --
35. Bessel processes; skew products; etc. [69] --
36. Brownian martingale representation ......... [73] --
37. Exponential semimartingales; estimates ....... . . [75] --
38. Cameron-Martin-Girsanov change of measure ...... [79] --
39. First applications: Doob ^-transforms; hitting of spheres; etc. . [83] --
40. Further applications: bridges; excursions; etc........ [86] --
41. Explicit Brownian martingale representation ....... [89] --
42. Burkholder-Davis-Gundy inequalities . . . ...... [93] --
43. Semimartingale local time; Tanaka's formula ....... [95] --
44. Study of joint continuity ........... . . . [99] --
45. Local time as an occupation density; generalized Ito-Tanaka --
formula . . [102] --
46. The Stratonovich calculus [106] --
47. Ricmann-sum approximation to ltd and Stratonovich integrals; --
simulation [108] --
CHAPTER V. STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSIONS --
I. INTRODUCTION --
I. What is a diffusion in R*? [110] --
2 FD diffusions recalled [112] --
3. SDEs as a means of constructing diffusions ........ [113] --
4 Example: Brownian motion on a surface [114] --
5. Examples: modelling noise in physical systems....... [114] --
6. Example: Skorokhod’s equation ............ I17 --
7. Examples: control problems ............. [119] --
2 PATHWISE UNIQUENESS, STRONG SDEs, FLOWS --
8. Our general SDE; previsible path functionals; diffusion SDEs [122] --
9. Pathwise uniqueness; exact SDEs ........... [124] --
10. Relationship between exact SDEs and strong solutions. . . . [125] --
11. The Ito existence and uniqueness result ......... [128] --
12 Locally Lipschitz SDEs; Lipschitz properties of a,1/2 . [132] --
13. Flows; the diffeomorphism theorem; time-reversed flows . . . [136] --
14. Carverhill’s noisy North-South flow on a circle ...... [141] --
15. The martingale optimality principle in control....... [144] --
3. WEAK SOLUTIONS, UNIQUENESS IN LAW --
16. Weak solutions of SDEs; Tanaka's SDE ......... [149] --
17. ‘Exact equals weak plus pathwise unique* ........ [151] --
18. Tsirel’son’s example ................ [155] --
4. MARTINGALE PROBLEMS, MARKOV PROPERTY --
19. Definition; orientation ............... [158] --
20. Equivalence of the martingale-problem and ‘weak’ formulations [160] --
21. Martingale problems and the strong Markov property . . . . 162 22 Appraisal and consolidation: where we have reached . . . . [163] --
23. Existence of solutions to the martingale problem ...... [166] --
24. The Stroock-Varadhan uniqueness theorem ....... [170] --
25. Martingale representation ........... . [173] --
Transformation of SDEs --
26. Change of time scale; Girsanov’s SDE [175] --
27. Change of measure ......... [177] --
28. Change of state-space; scale; Zvonkin’s observation; the Doss- --
Sussmann method................. [178] --
29. Krylov's example . [181] --
5. OVERTURE TO STOCHASTIC DIFFERENTIAL GEOMETRY --
30. Introduction; some key ideas; Stratonovich-to-Itd conversion [182] --
31. Brownian motion on a submanifold of R" [186] --
CHAPTER V. STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSIONS --
I. INTRODUCTION --
I. What is a diffusion in R*? [110] --
2 FD diffusions recalled [112] --
3. SDEs as a means of constructing diffusions ........ [113] --
4 Example: Brownian motion on a surface [114] --
5. Examples: modelling noise in physical systems....... [114] --
6. Example: Skorokhod’s equation ............ I17 --
7. Examples: control problems ............. [119] --
2 PATHWISE UNIQUENESS, STRONG SDEs, FLOWS --
8. Our general SDE; previsible path functionals; diffusion SDEs [122] --
9. Pathwise uniqueness; exact SDEs ........... [124] --
10. Relationship between exact SDEs and strong solutions. . . . [125] --
11. The Ito existence and uniqueness result ......... [128] --
12 8. ITO EXCURSION THEORY --
Locally Lipschitz SDEs; Lipschitz properties of a,1/2 . [132] --
13. Flows; the diffeomorphism theorem; time-reversed flows . . . [136] --
14. Carverhill’s noisy North-South flow on a circle ...... [141] --
15. The martingale optimality principle in control....... [144] --
3. WEAK SOLUTIONS, UNIQUENESS IN LAW --
16. Weak solutions of SDEs; Tanaka's SDE ......... [149] --
17. ‘Exact equals weak plus pathwise unique* ........ [151] --
18. Tsirel’son’s example ................ [155] --
4. MARTINGALE PROBLEMS, MARKOV PROPERTY --
19. Definition; orientation ............... [158] --
20. Equivalence of the martingale-problem and ‘weak’ formulations [160] --
21. Martingale problems and the strong Markov property . . . . 162 22 Appraisal and consolidation: where we have reached . . . . [163] --
23. Existence of solutions to the martingale problem ...... [166] --
24. The Stroock-Varadhan uniqueness theorem ....... [170] --
25. Martingale representation ........... . [173] --
Transformation of SDEs --
26. Change of time scale; Girsanov’s SDE [175] --
27. Change of measure ......... [177] --
28. Change of state-space; scale; Zvonkin’s observation; the Doss- --
Sussmann method................. [178] --
29. Krylov's example . [181] --
5. OVERTURE TO STOCHASTIC DIFFERENTIAL GEOMETRY --
30. Introduction; some key ideas; Stratonovich-to-Itd conversion [182] --
31. Brownian motion on a submanifold of R" [186] --
32. Parallel displacement; Riemannian connections [193] --
33. Extrinsic theory of BM^'fOfl)); rolling without slipping; martingales on manifolds; etc. [198] --
34. Intrinsic theory; normal coordinates; structural equations; diffusions on manifolds; etc. [203] --
35. Brownian motion on Lie groups ...... [224] --
36. Dynkin’s Brownian motion of ellipses; hyperbolic space interpretation; etc. . . [239] --
37. Khasminskii's method for studying stability; random vibrations. [246] --
38. Hormander’s theorem; Malliavin calculus; stochastic pullback; --
curvature.................. [250] --
6. ONE-DIMENSIONAL SDEs --
39. A local-time criterion for pathwise uniqueness [263] --
40. The Yamada-Watanabe pathwise uniqueness theorem .... [265] --
41. The Nakao pathwise-uniqueness theorem ........ [266] --
42. Solution of a variance control problem ......... [267] --
43. A comparison theorem ............... [269] --
7. ONE-DIMENSIONAL DIFFUSIONS --
44. Orientation ................... [270] --
45. Regular diffusions. [271] --
46. The scale function, s ................ [273] --
47. The speed measure, m; time substitution ......... [276] --
48. Example: the Bessel SDE . * ............. [284] --
49. Diffusion local time ........... '..... [289] --
50. Analytical aspects................. [291] --
51. Classification of boundary points ........... [295] --
52. Khasminskii’s test for explosions ........... [297] --
53. An ergodic theorem for 1-dimensional diffusions ...... [300] --
54. Coupling of 1-dimensional diffusions .......... [301] --
CHAPTER VI. THE GENERAL THEORY --
1 ORIENTATION --
1. Preparatory remarks [304] --
2. Levy processes [308] --
2. DEBUT AND SECTION THEOREMS --
3. Progressive processes ............... [313] --
4. Optional processes,^; optional times. . . . . . . . . . [315] --
5. The ‘optional’ section theorem ............ [317] --
6. Wanting (not to be skipped) ....... ...... [318] --
3. OPTIONAL PROJECTIONS AND FILTERING --
7. Optional projection "X of X --
8. The innovations approach to filtering --
9. The Kalman- Bucy filter --
10. The Bayesian approach to filtering; a change-detection filter . . --
11. Robust filtering --
4. CHARACTERIZING PREVISIBLE TIMES --
12. Previsible stopping times; PFA theorem ......... --
13. Totally inaccessible and accessible stopping times --
14. Some examples.................. --
15. Meyer’s previsibility theorem for Markov processes . . . . . --
16. Proof of the PFA theorem.............. --
17. The a-algebras --
18. Quasi-left-continuous filtrations ............ --
5. DUAL PREVISIBLE PROJECTIONS --
19. The previsible section theorem; the previsible projection pX --
of x ..................... [347] --
20. Doleans’ characterization of FV processes [349] --
21. Dual previsible projections, compensators ........ [350] --
22. Cumulative risk ................. [352] --
23. Some Brownian motion examples ........... [354] --
24. Decomposition of a continuous semimartingale ...... [358] --
25. Proof of the basic (u, A) correspondence ......... [359] --
26. Proof of the Doleans ‘optional’ characterization result . . . . [360] --
27. Proof of the Doleans ‘previsible’ characterization result . . [361] --
28. Levy systems for Markov processes [364] --
6. THE MEYER DECOMPOSITION THEOREM --
29. Introduction .' ....... [367] --
30. The Doleans proof of the Meyer decomposition ...... [369] --
31. Regular class (D) submartingales; approximation to compensators [372] --
32. The local form of the decomposition theorem [374] --
33. An L2 bounded local martingale which is not a martingale . . [375] --
34. The process ................. [376] --
35. Last exits and equilibrium charge ........... [377] --
7. STOCHASTIC INTEGRATION: THE GENERAL CASE --
36. The quadratic variation process [M] .......... [382] --
37. Stochastic integrals with respect to local martingales .... [388] --
38. Stochastic integrals with respect to semimartingales [391] --
39. Ito’s formula for semimartingales [394] --
40. Special semimartingales [394] --
41. Quasimartingales [396] --
8. ITO EXCURSION TEHORY --
42. Introduction ............. [398] --
43. Exursion theory for a finite Markov chain [400] --
44. Taking stock [405] --
45. Local time L at a regular extremal point a [406] --
46. Some technical point* hypotheses drones, etc ...... [410] --
47. The Portion point proem of excursions [413] --
48. Markovian character of a [414] --
49. Marking the excursions............... [418] --
50. Last-exit decomposition, calculation of the excursion law n . . [420] --
51. The Skorokhod embedding theorem .......... [423] --
52. Diffusion properties of local time in the space vanable; the --
Ray Knight theorem [428] --
53. Arcsine law for Brownian motion ........... [431] --
54. Resolvent density of a 1-dimensional diffusion ....... [432] --
55. Path decomposition of Brownian motions and of excursions. . [433] --
56. An illustrative calculation .............. [438] --
57. Feller Brownian motions .............. [439] --
58. Example: censoring and reweighting of excursion laws . . . . [442] --
59. Excursion theory by stochastic calculus: McGill’s lemma . . . [445] --
REFERENCES.................... [449] --
INDEX....................... [469] --

MR, 80i:60100 (v. 1)

MR, 89k:60117 (v. 2)

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha