Normal view

## Methods of logic / by William Van Orman Quine.

Editor: London : Routledge & Kegan Paul, 1952Descripción: xix, 264 p. ; 22 cmOtra clasificación: 03Bxx (03-01)
Contenidos:
Contents
PAGE Preface vii
Introduction xi
PART I. Truth Functions
1. Negation, Conjunction, and Alternation [1]
2. Truth Functions [7]
3. The Conditional [12]
4. Grouping [17]
5. Truth-value Analysis [22]
6. Consistency and Validity [28]
7. Impheation [33]
8. Words into Symbols [39]
9. Equivalence [46]
10. Normal Schemata [52]
11. Duality [59]
PART II. Uniform Quantification
12. Categorical Statements [64]
13. Venn’s Diagrams [69]
14. Syllogisms [73]
15. Limits of these Methods [79]
16. Quantification [83]
17. Uniform Quantificational Schemata [89]
18. Validity [94]
19. Equivalence. Canonical Schemata [101]
20. Testing for Consistency [107]
21. Testing for Implication [113]
PART III. General Theory of Quantification
22. Quantification Extended [119]
23. Quantificational Schemata and Predicates [127]
24. Validity of Quantificational Schemata [135]
25. Substitution in Quantificational Schemata [140]
26. Laws of Implication [147]
27. Deduction [153]
28. Completion of the Method [159]
29. Deductive Technique [167]
30. Polyadic Problems. Conversion of Quantifiers [175]
3L Application [182]
32. Nature of Quantification Theory [189]
PART IV. Glimpses Beyond
33. Existence and Singular Inference [196]
34. Singular Terms versus General Terms [203]
35. Identity [208]
36. Descriptions [215]
37. Elimination of Singular Terms [.220]
38. Classes [225]
39. Number [231]
40. Relations [237]
41. Class Theory, Mathematics, and the Theory of Proof [242]
42. Variant Theories of Classes [248]
Bibliography [253]
Index [259]
Item type Home library Shelving location Call number Materials specified Status Date due Barcode Course reserves
Libros
Libros ordenados por tema 03 Q7me (Browse shelf) Available A-120

Incluye referencias bibliográficas (p. 253-258).

Contents --
PAGE Preface vii --
Introduction xi --
PART I. Truth Functions --
1. Negation, Conjunction, and Alternation [1] --
2. Truth Functions [7] --
3. The Conditional [12] --
4. Grouping [17] --
5. Truth-value Analysis [22] --
6. Consistency and Validity [28] --
7. Impheation [33] --
8. Words into Symbols [39] --
9. Equivalence [46] --
10. Normal Schemata [52] --
11. Duality [59] --
PART II. Uniform Quantification --
12. Categorical Statements [64] --
13. Venn’s Diagrams [69] --
14. Syllogisms [73] --
15. Limits of these Methods [79] --
16. Quantification [83] --
17. Uniform Quantificational Schemata [89] --
18. Validity [94] --
19. Equivalence. Canonical Schemata [101] --
20. Testing for Consistency [107] --
21. Testing for Implication [113] --
PART III. General Theory of Quantification --
22. Quantification Extended [119] --
23. Quantificational Schemata and Predicates [127] --
24. Validity of Quantificational Schemata [135] --
25. Substitution in Quantificational Schemata [140] --
26. Laws of Implication [147] --
27. Deduction [153] --
28. Completion of the Method [159] --
29. Deductive Technique [167] --
30. Polyadic Problems. Conversion of Quantifiers [175] --
3L Application [182] --
32. Nature of Quantification Theory [189] --
PART IV. Glimpses Beyond --
33. Existence and Singular Inference [196] --
34. Singular Terms versus General Terms [203] --
35. Identity [208] --
36. Descriptions [215] --
37. Elimination of Singular Terms [.220] --
38. Classes [225] --
39. Number [231] --
40. Relations [237] --
41. Class Theory, Mathematics, and the Theory of Proof [242] --
42. Variant Theories of Classes [248] --
Bibliography [253] --
Index [259] --

MR, REVIEW #

There are no comments on this title.