Extremes and related properties of random sequences and processes / M.R. Leadbetter, Georg Lindgren, Holger Rootzén.

Por: Leadbetter, M. RColaborador(es): Lindgren, Georg, 1940- | Rootzén, HolgerSeries Springer series in statisticsEditor: New York : Springer-Verlag, c1983Descripción: xii, 336 p. : ill. ; 24 cmISBN: 0387907319Tema(s): Stochastic processes | Extreme value theoryOtra clasificación: *CODIGO*
Contenidos:
PART I
CLASSICAL THEORY OF EXTREMES [1]
CHAPTER [1]
Asymptotic Distributions of Extremes [3]
1.1. Introduction ahd Framework [3]
1.2. Inverse Functions and Khintchine’s Convergetice Theorem [5]
1.3. Max-Stable Distributions [8]
1.4. Extremal Types Theorem [9]
1.5. Convergence of [12]
1.6. General Theory of Domains of Attraction [15]
1.7. Examples [19]
1.8. Minima [27]
CHAPTER [2]
Exceedances of Levels and A: th Largest Maxima [31]
2.1. Poisson Properties of Exceedances [31]
2.2. Asymptotic Distribution of Arth Largest Values [33]
2.3. Joint Asymptotic Distribution of the Largest Maxima [34]
2.4. Rate of Convergence [36]
2.5. Increasing Ranks [44]
2.6. Central Ranks [46]
2.7. Intermediate Ranks [47]
PART II
EXTREMAL PROPERTIES OF DEPENDENT SEQUENCES [49]
CHAPTER [3]
Maxima of Stationary Sequences [51]
3.1. Dependence Restrictions for Stationary Sequences [51]
3.2. Distributional Mixing [52]
3.3. Extremal Types Theorem for Stationary Sequences [55]
3.4. Convergence of P{M„ u„} Under Dependence [58]
3.5. Associated Independent Sequences and Domains of Attraction [60]
3.6. Maxima Over Arbitrary Intervals [61]
3.7. On the Roles of the Conditions D(un), D'(un) [65]
3.8. Maxima of Moving Averages of Stable Variables [72]
CHAPTER [4]
Normal Sequences [79]
4.1. Stationary Normal Sequences and Covariance Conditions [79]
4.2. Normal Comparison Lemma [81]
4.3. Extremal Theory for Normal Sequences—Direct Approach [85]
4.4. The Conditions D(u„), D'(u^ for Normal Sequences [88]
4.5. Weaker Dependence Assumptions [89]
4.6. Rate of Convergence [92]
CHAPTER [5]
Convergence of the Point Process of Exceedances, and the Distribution of Acth Largest Maxima [101]
5.1. Point Processes of Exceedances [101]
5.2. Poisson Convergence of High-Level Exceedances [102]
5.3. Asymptotic Distribution of Acth Largest Values [104]
5.4. Independence of Maxima in Disjoint Intervals [106]
5.5. Exceedances of Multiple Levels [111]
5.6. Joint Asymptotic Distribution of the Largest Maxima [114]
5.7. Complete Poisson Convergence [117]
5.8. Record Times and Extremal Processes [120]
CHAPTER [6]
Nonstationary, and Strongly Dependent Normal Sequences [123]
6.1. Nonstationary Normal Sequences [123]
6.2. Asymptotic Distribution of the Maximum [127]
6.3. Convergence of ... Under Weakest Conditions on [130]
6.4. Stationary Normal Sequences with Strong Dependence [133]
6.5. Limits for Exceedances and Maxima when ... [135]
6.6. Distribution of the Maximum when ... [138]
PART III
EXTREME VALUES IN CONTINUOUS TIME [143]
CHAPTER [7]
Basic Properties of Extremes and Level Crossings [145]
7.1. Framework [145]
7.2. Level Crossings and Their Basic Properties [146]
7.3. Crossings by Normal Processes [151]
7.4. Maxima of Normal Processes [154]
7.5. Marked Crossings [156]
7.6. Local Maxima [160]
CHAPTER [8]
Maxima of Mean Square Differentiable Normal Processes [163]
8.1. Conditions [163]
8.2. Double Exponential Distribution of the Maximum [166]
CHAPTER [9]
Point Processes of Upcrossings and Local Maxima [173]
9.1. Poisson Convergence of Upcrossings [174]
9.2. Full Independence of Maxima in Disjoint Intervals [177]
9.3. Upcrossings of Several Adjacent Levels [180]
9.4. Location of Maxima [184]
9.5. Height and Location of Local Maxima [186]
9.6. Maxima Under More General Conditions [190]
CHAPTER [10]
Sample Path Properties at Upcrossings [191]
10.1. Marked Upcrossings [191]
10.2. Empirical Distributions of the Marks at Upcrossings [194]
10.3. The Slepian Model Process [198]
10.4. Excursions Above a High Level [201]
CHAPTER [11]
Maxima and Minima and Extremal Theory for Dependent Processes [205]
ILL Maxima and Minima [205]
11.2. Extreme Values and Crossings for Dependent Processes [211]
CHAPTER [12]
Maxima and Crossings of Nondifferentiable Normal Processes [216]
12.1. Introduction and Overview of the Main Result [216]
1'2.2. Maxima Over Finite Intervals [218]
12.3. Maxima Over Increasing Intervals [233]
12.4. Asymptotic Properties of E-upcrossings [237]
12.5. Weaker Conditions at Infinity [239]
CHAPTER [13]
Extremes of Continuous Parameter Stationary Processes [243]
13.1. The Extremal Types Theorem [243]
13.2. Convergence of ... [249]
13.3. Associated Sequence of Independent Variables [253]
13.4. Stationary Normal Processes [255]
13.5. Processes with Finite Upcrossing Intensities [256]
13.6. Poisson Convergence of Upcrossings [258]
13.7. Interpretation of the Function ... [262]
PART IV
APPLICATIONS OF EXTREME VALUE THEORY [265]
CHAPTER [14]
Extreme Value Theory and Strength of Materials [267]
14.1. Characterizations of the Extreme Value Distributions [267]
14.2. Size Effects in Extreme Value Distributions [271]
CHAPTER [15]
Application of Extremes and Crossings Under Dependence [278]
15.1. Extremes in Discrete and Continuous Time [278]
15.2. Poisson Exceedances and Exponential Waiting Times [281]
15.3. Domains of Attraction and Extremes from Mixed Distributions [284]
15.4. Extrapolation of Extremes Over an Extended Period of Time [292]
15.5. Local Extremes—Application to Random Waves [297]
 APPENDIX
Some Basic Concepts of Point Process Theory [305]
Bibliography [313]
List of Special Symbols [331]
Index [333]
List(s) this item appears in: Últimas adquisiciones
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode
Libros Libros Instituto de Matemática, CONICET-UNS
Últimas adquisiciones 60 L434 (Browse shelf) Available A-9366

Includes index.

Bibliografía: p. [313]-329.

PART I --
CLASSICAL THEORY OF EXTREMES [1] --
CHAPTER [1] --
Asymptotic Distributions of Extremes [3] --
1.1. Introduction ahd Framework [3] --
1.2. Inverse Functions and Khintchine’s Convergetice Theorem [5] --
1.3. Max-Stable Distributions [8] --
1.4. Extremal Types Theorem [9] --
1.5. Convergence of [12] --
1.6. General Theory of Domains of Attraction [15] --
1.7. Examples [19] --
1.8. Minima [27] --
CHAPTER [2] --
Exceedances of Levels and A: th Largest Maxima [31] --
2.1. Poisson Properties of Exceedances [31] --
2.2. Asymptotic Distribution of Arth Largest Values [33] --
2.3. Joint Asymptotic Distribution of the Largest Maxima [34] --
2.4. Rate of Convergence [36] --
2.5. Increasing Ranks [44] --
2.6. Central Ranks [46] --
2.7. Intermediate Ranks [47] --
PART II --
EXTREMAL PROPERTIES OF DEPENDENT SEQUENCES [49] --
CHAPTER [3] --
Maxima of Stationary Sequences [51] --
3.1. Dependence Restrictions for Stationary Sequences [51] --
3.2. Distributional Mixing [52] --
3.3. Extremal Types Theorem for Stationary Sequences [55] --
3.4. Convergence of P{M„ u„} Under Dependence [58] --
3.5. Associated Independent Sequences and Domains of Attraction [60] --
3.6. Maxima Over Arbitrary Intervals [61] --
3.7. On the Roles of the Conditions D(un), D'(un) [65] --
3.8. Maxima of Moving Averages of Stable Variables [72] --
CHAPTER [4] --
Normal Sequences [79] --
4.1. Stationary Normal Sequences and Covariance Conditions [79] --
4.2. Normal Comparison Lemma [81] --
4.3. Extremal Theory for Normal Sequences—Direct Approach [85] --
4.4. The Conditions D(u„), D'(u^ for Normal Sequences [88] --
4.5. Weaker Dependence Assumptions [89] --
4.6. Rate of Convergence [92] --
CHAPTER [5] --
Convergence of the Point Process of Exceedances, and the Distribution of Acth Largest Maxima [101] --
5.1. Point Processes of Exceedances [101] --
5.2. Poisson Convergence of High-Level Exceedances [102] --
5.3. Asymptotic Distribution of Acth Largest Values [104] --
5.4. Independence of Maxima in Disjoint Intervals [106] --
5.5. Exceedances of Multiple Levels [111] --
5.6. Joint Asymptotic Distribution of the Largest Maxima [114] --
5.7. Complete Poisson Convergence [117] --
5.8. Record Times and Extremal Processes [120] --
CHAPTER [6] --
Nonstationary, and Strongly Dependent Normal Sequences [123] --
6.1. Nonstationary Normal Sequences [123] --
6.2. Asymptotic Distribution of the Maximum [127] --
6.3. Convergence of ... Under Weakest Conditions on [130] --
6.4. Stationary Normal Sequences with Strong Dependence [133] --
6.5. Limits for Exceedances and Maxima when ... [135] --
6.6. Distribution of the Maximum when ... [138] --
PART III --
EXTREME VALUES IN CONTINUOUS TIME [143] --
CHAPTER [7] --
Basic Properties of Extremes and Level Crossings [145] --
7.1. Framework [145] --
7.2. Level Crossings and Their Basic Properties [146] --
7.3. Crossings by Normal Processes [151] --
7.4. Maxima of Normal Processes [154] --
7.5. Marked Crossings [156] --
7.6. Local Maxima [160] --
CHAPTER [8] --
Maxima of Mean Square Differentiable Normal Processes [163] --
8.1. Conditions [163] --
8.2. Double Exponential Distribution of the Maximum [166] --
CHAPTER [9] --
Point Processes of Upcrossings and Local Maxima [173] --
9.1. Poisson Convergence of Upcrossings [174] --
9.2. Full Independence of Maxima in Disjoint Intervals [177] --
9.3. Upcrossings of Several Adjacent Levels [180] --
9.4. Location of Maxima [184] --
9.5. Height and Location of Local Maxima [186] --
9.6. Maxima Under More General Conditions [190] --
CHAPTER [10] --
Sample Path Properties at Upcrossings [191] --
10.1. Marked Upcrossings [191] --
10.2. Empirical Distributions of the Marks at Upcrossings [194] --
10.3. The Slepian Model Process [198] --
10.4. Excursions Above a High Level [201] --
CHAPTER [11] --
Maxima and Minima and Extremal Theory for Dependent Processes [205] --
ILL Maxima and Minima [205] --
11.2. Extreme Values and Crossings for Dependent Processes [211] --
CHAPTER [12] --
Maxima and Crossings of Nondifferentiable Normal Processes [216] --
12.1. Introduction and Overview of the Main Result [216] --
1'2.2. Maxima Over Finite Intervals [218] --
12.3. Maxima Over Increasing Intervals [233] --
12.4. Asymptotic Properties of E-upcrossings [237] --
12.5. Weaker Conditions at Infinity [239] --
CHAPTER [13] --
Extremes of Continuous Parameter Stationary Processes [243] --
13.1. The Extremal Types Theorem [243] --
13.2. Convergence of ... [249] --
13.3. Associated Sequence of Independent Variables [253] --
13.4. Stationary Normal Processes [255] --
13.5. Processes with Finite Upcrossing Intensities [256] --
13.6. Poisson Convergence of Upcrossings [258] --
13.7. Interpretation of the Function ... [262] --
PART IV --
APPLICATIONS OF EXTREME VALUE THEORY [265] --
CHAPTER [14] --
Extreme Value Theory and Strength of Materials [267] --
14.1. Characterizations of the Extreme Value Distributions [267] --
14.2. Size Effects in Extreme Value Distributions [271] --
CHAPTER [15] --
Application of Extremes and Crossings Under Dependence [278] --
15.1. Extremes in Discrete and Continuous Time [278] --
15.2. Poisson Exceedances and Exponential Waiting Times [281] --
15.3. Domains of Attraction and Extremes from Mixed Distributions [284] --
15.4. Extrapolation of Extremes Over an Extended Period of Time [292] --
15.5. Local Extremes—Application to Random Waves [297] --
APPENDIX --
Some Basic Concepts of Point Process Theory [305] --
Bibliography [313] --
List of Special Symbols [331] --
Index [333] --

MR, REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha