Extremes and related properties of random sequences and processes / M.R. Leadbetter, Georg Lindgren, Holger Rootzén.
Series Springer series in statisticsEditor: New York : Springer-Verlag, c1983Descripción: xii, 336 p. : ill. ; 24 cmISBN: 0387907319Tema(s): Stochastic processes | Extreme value theoryOtra clasificación: *CODIGO*PART I CLASSICAL THEORY OF EXTREMES [1] CHAPTER [1] Asymptotic Distributions of Extremes [3] 1.1. Introduction ahd Framework [3] 1.2. Inverse Functions and Khintchine’s Convergetice Theorem [5] 1.3. Max-Stable Distributions [8] 1.4. Extremal Types Theorem [9] 1.5. Convergence of [12] 1.6. General Theory of Domains of Attraction [15] 1.7. Examples [19] 1.8. Minima [27] CHAPTER [2] Exceedances of Levels and A: th Largest Maxima [31] 2.1. Poisson Properties of Exceedances [31] 2.2. Asymptotic Distribution of Arth Largest Values [33] 2.3. Joint Asymptotic Distribution of the Largest Maxima [34] 2.4. Rate of Convergence [36] 2.5. Increasing Ranks [44] 2.6. Central Ranks [46] 2.7. Intermediate Ranks [47] PART II EXTREMAL PROPERTIES OF DEPENDENT SEQUENCES [49] CHAPTER [3] Maxima of Stationary Sequences [51] 3.1. Dependence Restrictions for Stationary Sequences [51] 3.2. Distributional Mixing [52] 3.3. Extremal Types Theorem for Stationary Sequences [55] 3.4. Convergence of P{M„ u„} Under Dependence [58] 3.5. Associated Independent Sequences and Domains of Attraction [60] 3.6. Maxima Over Arbitrary Intervals [61] 3.7. On the Roles of the Conditions D(un), D'(un) [65] 3.8. Maxima of Moving Averages of Stable Variables [72] CHAPTER [4] Normal Sequences [79] 4.1. Stationary Normal Sequences and Covariance Conditions [79] 4.2. Normal Comparison Lemma [81] 4.3. Extremal Theory for Normal Sequences—Direct Approach [85] 4.4. The Conditions D(u„), D'(u^ for Normal Sequences [88] 4.5. Weaker Dependence Assumptions [89] 4.6. Rate of Convergence [92] CHAPTER [5] Convergence of the Point Process of Exceedances, and the Distribution of Acth Largest Maxima [101] 5.1. Point Processes of Exceedances [101] 5.2. Poisson Convergence of High-Level Exceedances [102] 5.3. Asymptotic Distribution of Acth Largest Values [104] 5.4. Independence of Maxima in Disjoint Intervals [106] 5.5. Exceedances of Multiple Levels [111] 5.6. Joint Asymptotic Distribution of the Largest Maxima [114] 5.7. Complete Poisson Convergence [117] 5.8. Record Times and Extremal Processes [120] CHAPTER [6] Nonstationary, and Strongly Dependent Normal Sequences [123] 6.1. Nonstationary Normal Sequences [123] 6.2. Asymptotic Distribution of the Maximum [127] 6.3. Convergence of ... Under Weakest Conditions on [130] 6.4. Stationary Normal Sequences with Strong Dependence [133] 6.5. Limits for Exceedances and Maxima when ... [135] 6.6. Distribution of the Maximum when ... [138] PART III EXTREME VALUES IN CONTINUOUS TIME [143] CHAPTER [7] Basic Properties of Extremes and Level Crossings [145] 7.1. Framework [145] 7.2. Level Crossings and Their Basic Properties [146] 7.3. Crossings by Normal Processes [151] 7.4. Maxima of Normal Processes [154] 7.5. Marked Crossings [156] 7.6. Local Maxima [160] CHAPTER [8] Maxima of Mean Square Differentiable Normal Processes [163] 8.1. Conditions [163] 8.2. Double Exponential Distribution of the Maximum [166] CHAPTER [9] Point Processes of Upcrossings and Local Maxima [173] 9.1. Poisson Convergence of Upcrossings [174] 9.2. Full Independence of Maxima in Disjoint Intervals [177] 9.3. Upcrossings of Several Adjacent Levels [180] 9.4. Location of Maxima [184] 9.5. Height and Location of Local Maxima [186] 9.6. Maxima Under More General Conditions [190] CHAPTER [10] Sample Path Properties at Upcrossings [191] 10.1. Marked Upcrossings [191] 10.2. Empirical Distributions of the Marks at Upcrossings [194] 10.3. The Slepian Model Process [198] 10.4. Excursions Above a High Level [201] CHAPTER [11] Maxima and Minima and Extremal Theory for Dependent Processes [205] ILL Maxima and Minima [205] 11.2. Extreme Values and Crossings for Dependent Processes [211] CHAPTER [12] Maxima and Crossings of Nondifferentiable Normal Processes [216] 12.1. Introduction and Overview of the Main Result [216] 1'2.2. Maxima Over Finite Intervals [218] 12.3. Maxima Over Increasing Intervals [233] 12.4. Asymptotic Properties of E-upcrossings [237] 12.5. Weaker Conditions at Infinity [239] CHAPTER [13] Extremes of Continuous Parameter Stationary Processes [243] 13.1. The Extremal Types Theorem [243] 13.2. Convergence of ... [249] 13.3. Associated Sequence of Independent Variables [253] 13.4. Stationary Normal Processes [255] 13.5. Processes with Finite Upcrossing Intensities [256] 13.6. Poisson Convergence of Upcrossings [258] 13.7. Interpretation of the Function ... [262] PART IV APPLICATIONS OF EXTREME VALUE THEORY [265] CHAPTER [14] Extreme Value Theory and Strength of Materials [267] 14.1. Characterizations of the Extreme Value Distributions [267] 14.2. Size Effects in Extreme Value Distributions [271] CHAPTER [15] Application of Extremes and Crossings Under Dependence [278] 15.1. Extremes in Discrete and Continuous Time [278] 15.2. Poisson Exceedances and Exponential Waiting Times [281] 15.3. Domains of Attraction and Extremes from Mixed Distributions [284] 15.4. Extrapolation of Extremes Over an Extended Period of Time [292] 15.5. Local Extremes—Application to Random Waves [297] APPENDIX Some Basic Concepts of Point Process Theory [305] Bibliography [313] List of Special Symbols [331] Index [333]
Item type | Home library | Shelving location | Call number | Materials specified | Status | Date due | Barcode |
---|---|---|---|---|---|---|---|
![]() |
Instituto de Matemática, CONICET-UNS | Libros ordenados por tema | 60 L434 (Browse shelf) | Available | A-9366 |
Includes index.
Bibliografía: p. [313]-329.
PART I --
CLASSICAL THEORY OF EXTREMES [1] --
CHAPTER [1] --
Asymptotic Distributions of Extremes [3] --
1.1. Introduction ahd Framework [3] --
1.2. Inverse Functions and Khintchine’s Convergetice Theorem [5] --
1.3. Max-Stable Distributions [8] --
1.4. Extremal Types Theorem [9] --
1.5. Convergence of [12] --
1.6. General Theory of Domains of Attraction [15] --
1.7. Examples [19] --
1.8. Minima [27] --
CHAPTER [2] --
Exceedances of Levels and A: th Largest Maxima [31] --
2.1. Poisson Properties of Exceedances [31] --
2.2. Asymptotic Distribution of Arth Largest Values [33] --
2.3. Joint Asymptotic Distribution of the Largest Maxima [34] --
2.4. Rate of Convergence [36] --
2.5. Increasing Ranks [44] --
2.6. Central Ranks [46] --
2.7. Intermediate Ranks [47] --
PART II --
EXTREMAL PROPERTIES OF DEPENDENT SEQUENCES [49] --
CHAPTER [3] --
Maxima of Stationary Sequences [51] --
3.1. Dependence Restrictions for Stationary Sequences [51] --
3.2. Distributional Mixing [52] --
3.3. Extremal Types Theorem for Stationary Sequences [55] --
3.4. Convergence of P{M„ u„} Under Dependence [58] --
3.5. Associated Independent Sequences and Domains of Attraction [60] --
3.6. Maxima Over Arbitrary Intervals [61] --
3.7. On the Roles of the Conditions D(un), D'(un) [65] --
3.8. Maxima of Moving Averages of Stable Variables [72] --
CHAPTER [4] --
Normal Sequences [79] --
4.1. Stationary Normal Sequences and Covariance Conditions [79] --
4.2. Normal Comparison Lemma [81] --
4.3. Extremal Theory for Normal Sequences—Direct Approach [85] --
4.4. The Conditions D(u„), D'(u^ for Normal Sequences [88] --
4.5. Weaker Dependence Assumptions [89] --
4.6. Rate of Convergence [92] --
CHAPTER [5] --
Convergence of the Point Process of Exceedances, and the Distribution of Acth Largest Maxima [101] --
5.1. Point Processes of Exceedances [101] --
5.2. Poisson Convergence of High-Level Exceedances [102] --
5.3. Asymptotic Distribution of Acth Largest Values [104] --
5.4. Independence of Maxima in Disjoint Intervals [106] --
5.5. Exceedances of Multiple Levels [111] --
5.6. Joint Asymptotic Distribution of the Largest Maxima [114] --
5.7. Complete Poisson Convergence [117] --
5.8. Record Times and Extremal Processes [120] --
CHAPTER [6] --
Nonstationary, and Strongly Dependent Normal Sequences [123] --
6.1. Nonstationary Normal Sequences [123] --
6.2. Asymptotic Distribution of the Maximum [127] --
6.3. Convergence of ... Under Weakest Conditions on [130] --
6.4. Stationary Normal Sequences with Strong Dependence [133] --
6.5. Limits for Exceedances and Maxima when ... [135] --
6.6. Distribution of the Maximum when ... [138] --
PART III --
EXTREME VALUES IN CONTINUOUS TIME [143] --
CHAPTER [7] --
Basic Properties of Extremes and Level Crossings [145] --
7.1. Framework [145] --
7.2. Level Crossings and Their Basic Properties [146] --
7.3. Crossings by Normal Processes [151] --
7.4. Maxima of Normal Processes [154] --
7.5. Marked Crossings [156] --
7.6. Local Maxima [160] --
CHAPTER [8] --
Maxima of Mean Square Differentiable Normal Processes [163] --
8.1. Conditions [163] --
8.2. Double Exponential Distribution of the Maximum [166] --
CHAPTER [9] --
Point Processes of Upcrossings and Local Maxima [173] --
9.1. Poisson Convergence of Upcrossings [174] --
9.2. Full Independence of Maxima in Disjoint Intervals [177] --
9.3. Upcrossings of Several Adjacent Levels [180] --
9.4. Location of Maxima [184] --
9.5. Height and Location of Local Maxima [186] --
9.6. Maxima Under More General Conditions [190] --
CHAPTER [10] --
Sample Path Properties at Upcrossings [191] --
10.1. Marked Upcrossings [191] --
10.2. Empirical Distributions of the Marks at Upcrossings [194] --
10.3. The Slepian Model Process [198] --
10.4. Excursions Above a High Level [201] --
CHAPTER [11] --
Maxima and Minima and Extremal Theory for Dependent Processes [205] --
ILL Maxima and Minima [205] --
11.2. Extreme Values and Crossings for Dependent Processes [211] --
CHAPTER [12] --
Maxima and Crossings of Nondifferentiable Normal Processes [216] --
12.1. Introduction and Overview of the Main Result [216] --
1'2.2. Maxima Over Finite Intervals [218] --
12.3. Maxima Over Increasing Intervals [233] --
12.4. Asymptotic Properties of E-upcrossings [237] --
12.5. Weaker Conditions at Infinity [239] --
CHAPTER [13] --
Extremes of Continuous Parameter Stationary Processes [243] --
13.1. The Extremal Types Theorem [243] --
13.2. Convergence of ... [249] --
13.3. Associated Sequence of Independent Variables [253] --
13.4. Stationary Normal Processes [255] --
13.5. Processes with Finite Upcrossing Intensities [256] --
13.6. Poisson Convergence of Upcrossings [258] --
13.7. Interpretation of the Function ... [262] --
PART IV --
APPLICATIONS OF EXTREME VALUE THEORY [265] --
CHAPTER [14] --
Extreme Value Theory and Strength of Materials [267] --
14.1. Characterizations of the Extreme Value Distributions [267] --
14.2. Size Effects in Extreme Value Distributions [271] --
CHAPTER [15] --
Application of Extremes and Crossings Under Dependence [278] --
15.1. Extremes in Discrete and Continuous Time [278] --
15.2. Poisson Exceedances and Exponential Waiting Times [281] --
15.3. Domains of Attraction and Extremes from Mixed Distributions [284] --
15.4. Extrapolation of Extremes Over an Extended Period of Time [292] --
15.5. Local Extremes—Application to Random Waves [297] --
APPENDIX --
Some Basic Concepts of Point Process Theory [305] --
Bibliography [313] --
List of Special Symbols [331] --
Index [333] --
MR, REVIEW #
There are no comments on this title.