Analysis of numerical methods / [by] Eugene Isaacson [and] Herbert Bishop Keller.

Por: Isaacson, EugeneColaborador(es): Keller, Herbert BishopEditor: New York : Wiley, [1966]Descripción: xv, 541 p. : il. ; 24 cmTema(s): Numerical analysisOtra clasificación: 65-02
Contenidos:
Chapter 1 Norms, Arithmetic, and Well-Posed Computations
0. Introduction [1]
1. Norms of Vectors and Matrices [2]
1.1. Convergent Matrices [14]
2. Floating-Point Arithmetic and Rounding Errors [17]
3. Well-Posed Computations [21]
Chapter 2 Numerical Solution of Linear Systems and Matrix Inversion
0. Introduction [26]
1. Gaussian Elimination [29]
1.1. Operational Counts [34]
1.2. A Priori Error Estimates; Condition Number [37]
1.3. A Posteriori Error Estimates [46]
2. Variants of Gaussian Elimination [50]
3. Direct Factorization Methods [52]
3.1. Symmetric Matrices (Cholesky Method) [54]
3.2. Tridiagonal or Jacobi Matrices [55]
3.3. Block-Tridiagonal Matrices [58]
4. Iterative Methods [61]
4.1. Jacobi or Simultaneous Iterations [64]
4.2. Gauss-Seidel or Successive Iterations [66]
4.3. Method of Residual Correction [68]
4.4. Positive Definite Systems [70]
4.5. Block Iterations [72]
5. The Acceleration of Iterative Methods [73]
5.1. Practical Application of Acceleration Methods [78]
5.2. Generalizations of the Acceleration Method [80]
6. Matrix Inversion by Higher Order Iterations [82]
Chapter 3 Iterative Solutions of Non-Linear Equations
0. Introduction [85]
1. Functional Iteration for a Single Equation [86]
1.1. Error Propagation [91]
1.2. Second and Higher Order Iteration Methods [94]
2. Some Explicit Iteration Procedures [96]
2.1. The Simple Iteration or Chord Method (First Order) [97]
2.2. Newton’s Method (Second Order) [97]
2.3. Method of False Position (Fractional Order) [99]
2.4. Aitken’s δ2-Method (Arbitrary Order) [102]
3. Functional Iteration for a System of Equations [109]
3.1. Some Explicit Iteration Schemes for Systems [113]
3.2. Convergence of Newton’s Method [115]
3.3. A Special Acceleration Procedure for Non-Linear Systems [120]
4. Special Methods for Polynomials [123]
4.1. Evaluation of Polynomials and Their Derivatives [124]
4.2. Sturm Sequences [126]
4.3. Bernoulli’s Method [128]
4.4. Bairstow’s Method [131]
Chapter 4 Computation of Eigenvalues and Eigenvectors
0. Introduction [134]
1. Well-Posedness, Error Estimates [135]
1.1. A Posteriori Error Estimates [140]
2. The Power Method [147]
2.1. Acceleration of the Power Method [151]
2.2. Intermediate Eigenvalues and Eigenvectors (Orthogonalization, Deflation, Inverse Iteration) [152]
3. Methods Based on Matrix Transformations [159]
Chapter 5 Basic Theory of Polynomial Approximation
0. Introduction [176]
1. Weierstrass’ Approximation Theorem and Bernstein Polynomials [183]
2. The Interpolation Polynomials [187]
2.1. The Pointwise Error in Interpolation Polynomials [189]
2.2. Hermite or Osculating Interpolation [192]
3. Least Squares Approximation [194]
3.1. Construction of Orthonormal Functions [199]
3.2. Weighted Least Squares Approximation [202]
3.3. Some Properties of Orthogonal Polynomials [203]
3.4. Pointwise Convergence of Least Squares Approximations [205]
3.5. Discrete Least Squares Approximation [211]
4. Polynomials of “Best” Approximation [221]
4.1. The Error in the Best Approximation [223]
4.2. Chebyshev Polynomials [226]
5. Trigonometric Approximation [229]
5.1. Trigonometric Interpolation [230]
5.2. Least Squares Trigonometric Approximation, Fourier Series [237]
5.3. “Best” Trigonometric Approximation [240]
Chapter 6 Differences, Interpolation Polynomials, and Approximate Differentiation
0. Introduction [245]
1. Newton’s Interpolation Polynomial and Divided Differences [246]
2. Iterative Linear Interpolation [258]
3. Forward Differences and Equally Spaced Interpolation Points [260]
3.1. Interpolation Polynomials and Remainder Terms for Equidistant Points [264]
3.2. Centered Interpolation Formulae [270]
3.3. Practical Observations on Interpolation [273]
3.4. Divergence of Sequences of Interpolation Polynomials [275]
4. Calculus of Difference Operators [281]
5. Numerical Differentiation [288]
5.1. Differentiation Using Equidistant Points [292]
6. Multivariate Interpolation [294]
Chapter 7 Numerical Integration
0. Introduction [300]
1. Interpolator Quadrature [303]
1.1. Newton-Cotes Formulae [308]
1.2. Determination of the Coefficients [315]
2. Roundoff Errors and Uniform Coefficient Formulae [319]
2.1. Determination of Uniform Coefficient Formulae [323]
3. Gaussian Quadrature; Maximum Degree of Precision [327]
4. Weighted Quadrature Formulae [331]
4.1. Gauss-Chebyshev Quadrature [334]
5. Composite Quadrature Formulae [336]
5.1. Periodic Functions and the Trapezoidal Rule [340]
5.2. Convergence for Continuous Functions [341]
6. Singular Integrals; Discontinuous Integrands [346]
6.1. Finite Jump Discontinuities [346]
6.2. Infinite Integrand [346]
6.3. Infinite Integration Limits [350]
7. Multiple Integrals [352]
7.1. The Use of Interpolation Polynomials [354]
7.2. Undetermined Coefficients (and Nodes) [356]
7.3. Separation of Variables [359]
7.4. Composite Formulae for Multiple Integrals [361]
Chapter 8 Numerical Solution of Ordinary Differential Equations
0. Introduction [364]
1. Methods Based on Approximating the Derivative: Euler-Cauchy Method [367]
1.1. Improving the Accuracy of the Numerical Solution [372]
1.2. Roundoff Errors [374]
1.3. Centered Difference Method [377]
1.4. A Divergent Method with Higher Order Truncation Error [379]
2. Multistep Methods Based on Quadrature Formulae [384]
2.1. Error Estimates in Predictor-Corrector Methods [388]
2.2. Change of Net Spacing [393]
3. One-Step Methods [395]
3.1. Finite Taylor’s Series [397]
3.2. One-Step Methods Based on Quadrature Formulae [400]
4. Linear Difference Equations [405]
5. Consistency, Convergence, and Stability of Difference Methods [410]
6. Higher Order Equations and Systems [418]
7. Boundary Value and Eigenvalue Problems [421]
7.1. Initial Value or “Shooting” Methods [424]
7.2. Finite Difference Methods [427]
7.3. Eigenvalue Problems [434]
Chapter 9 Difference Methods for Partial Differential Equations
0. Introduction [442]
0.1. Conventions of Notation [444]
1. Laplace Equation in a Rectangle [445]
1.1. Matrix Formulation [452]
1.2. An Eigenvalue Problem for the Laplacian Operator [458]
2. Solution of Laplace Difference Equations [463]
2.1. Line or Block Iterations [471]
2.2 Alternating Direction Iterations [475]
3. Wave Equation and an Equivalent System [479]
3.1. Difference Approximations and Domains of Dependence [485]
3.2. Convergence of Difference Solutions [491]
3.3. Difference Methods for a First Order Hyperbolic System [495]
4. Heat Equation [501]
4.1. Implicit Methods [505]
5. General Theory: Consistency, Convergence, and Stability [514]
5.1. Further Consequences of Stability [522]
5.2. The von Neumann Stability Test [523]
Bibliography [531]
Index [535]
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 65 Is73 (Browse shelf) Available A-4139

MÉTODOS NUMÉRICOS A


Bibliografía: p. 531-533.

Chapter 1 Norms, Arithmetic, and Well-Posed Computations --
0. Introduction [1] --
1. Norms of Vectors and Matrices [2] --
1.1. Convergent Matrices [14] --
2. Floating-Point Arithmetic and Rounding Errors [17] --
3. Well-Posed Computations [21] --
Chapter 2 Numerical Solution of Linear Systems and Matrix Inversion --
0. Introduction [26] --
1. Gaussian Elimination [29] --
1.1. Operational Counts [34] --
1.2. A Priori Error Estimates; Condition Number [37] --
1.3. A Posteriori Error Estimates [46] --
2. Variants of Gaussian Elimination [50] --
3. Direct Factorization Methods [52] --
3.1. Symmetric Matrices (Cholesky Method) [54] --
3.2. Tridiagonal or Jacobi Matrices [55] --
3.3. Block-Tridiagonal Matrices [58] --
4. Iterative Methods [61] --
4.1. Jacobi or Simultaneous Iterations [64] --
4.2. Gauss-Seidel or Successive Iterations [66] --
4.3. Method of Residual Correction [68] --
4.4. Positive Definite Systems [70] --
4.5. Block Iterations [72] --
5. The Acceleration of Iterative Methods [73] --
5.1. Practical Application of Acceleration Methods [78] --
5.2. Generalizations of the Acceleration Method [80] --
6. Matrix Inversion by Higher Order Iterations [82] --
Chapter 3 Iterative Solutions of Non-Linear Equations --
0. Introduction [85] --
1. Functional Iteration for a Single Equation [86] --
1.1. Error Propagation [91] --
1.2. Second and Higher Order Iteration Methods [94] --
2. Some Explicit Iteration Procedures [96] --
2.1. The Simple Iteration or Chord Method (First Order) [97] --
2.2. Newton’s Method (Second Order) [97] --
2.3. Method of False Position (Fractional Order) [99] --
2.4. Aitken’s δ2-Method (Arbitrary Order) [102] --
3. Functional Iteration for a System of Equations [109] --
3.1. Some Explicit Iteration Schemes for Systems [113] --
3.2. Convergence of Newton’s Method [115] --
3.3. A Special Acceleration Procedure for Non-Linear Systems [120] --
4. Special Methods for Polynomials [123] --
4.1. Evaluation of Polynomials and Their Derivatives [124] --
4.2. Sturm Sequences [126] --
4.3. Bernoulli’s Method [128] --
4.4. Bairstow’s Method [131] --
Chapter 4 Computation of Eigenvalues and Eigenvectors --
0. Introduction [134] --
1. Well-Posedness, Error Estimates [135] --
1.1. A Posteriori Error Estimates [140] --
2. The Power Method [147] --
2.1. Acceleration of the Power Method [151] --
2.2. Intermediate Eigenvalues and Eigenvectors (Orthogonalization, Deflation, Inverse Iteration) [152] --
3. Methods Based on Matrix Transformations [159] --
Chapter 5 Basic Theory of Polynomial Approximation --
0. Introduction [176] --
1. Weierstrass’ Approximation Theorem and Bernstein Polynomials [183] --
2. The Interpolation Polynomials [187] --
2.1. The Pointwise Error in Interpolation Polynomials [189] --
2.2. Hermite or Osculating Interpolation [192] --
3. Least Squares Approximation [194] --
3.1. Construction of Orthonormal Functions [199] --
3.2. Weighted Least Squares Approximation [202] --
3.3. Some Properties of Orthogonal Polynomials [203] --
3.4. Pointwise Convergence of Least Squares Approximations [205] --
3.5. Discrete Least Squares Approximation [211] --
4. Polynomials of “Best” Approximation [221] --
4.1. The Error in the Best Approximation [223] --
4.2. Chebyshev Polynomials [226] --
5. Trigonometric Approximation [229] --
5.1. Trigonometric Interpolation [230] --
5.2. Least Squares Trigonometric Approximation, Fourier Series [237] --
5.3. “Best” Trigonometric Approximation [240] --
Chapter 6 Differences, Interpolation Polynomials, and Approximate Differentiation --
0. Introduction [245] --
1. Newton’s Interpolation Polynomial and Divided Differences [246] --
2. Iterative Linear Interpolation [258] --
3. Forward Differences and Equally Spaced Interpolation Points [260] --
3.1. Interpolation Polynomials and Remainder Terms for Equidistant Points [264] --
3.2. Centered Interpolation Formulae [270] --
3.3. Practical Observations on Interpolation [273] --
3.4. Divergence of Sequences of Interpolation Polynomials [275] --
4. Calculus of Difference Operators [281] --
5. Numerical Differentiation [288] --
5.1. Differentiation Using Equidistant Points [292] --
6. Multivariate Interpolation [294] --
Chapter 7 Numerical Integration --
0. Introduction [300] --
1. Interpolator Quadrature [303] --
1.1. Newton-Cotes Formulae [308] --
1.2. Determination of the Coefficients [315] --
2. Roundoff Errors and Uniform Coefficient Formulae [319] --
2.1. Determination of Uniform Coefficient Formulae [323] --
3. Gaussian Quadrature; Maximum Degree of Precision [327] --
4. Weighted Quadrature Formulae [331] --
4.1. Gauss-Chebyshev Quadrature [334] --
5. Composite Quadrature Formulae [336] --
5.1. Periodic Functions and the Trapezoidal Rule [340] --
5.2. Convergence for Continuous Functions [341] --
6. Singular Integrals; Discontinuous Integrands [346] --
6.1. Finite Jump Discontinuities [346] --
6.2. Infinite Integrand [346] --
6.3. Infinite Integration Limits [350] --
7. Multiple Integrals [352] --
7.1. The Use of Interpolation Polynomials [354] --
7.2. Undetermined Coefficients (and Nodes) [356] --
7.3. Separation of Variables [359] --
7.4. Composite Formulae for Multiple Integrals [361] --
Chapter 8 Numerical Solution of Ordinary Differential Equations --
0. Introduction [364] --
1. Methods Based on Approximating the Derivative: Euler-Cauchy Method [367] --
1.1. Improving the Accuracy of the Numerical Solution [372] --
1.2. Roundoff Errors [374] --
1.3. Centered Difference Method [377] --
1.4. A Divergent Method with Higher Order Truncation Error [379] --
2. Multistep Methods Based on Quadrature Formulae [384] --
2.1. Error Estimates in Predictor-Corrector Methods [388] --
2.2. Change of Net Spacing [393] --
3. One-Step Methods [395] --
3.1. Finite Taylor’s Series [397] --
3.2. One-Step Methods Based on Quadrature Formulae [400] --
4. Linear Difference Equations [405] --
5. Consistency, Convergence, and Stability of Difference Methods [410] --
6. Higher Order Equations and Systems [418] --
7. Boundary Value and Eigenvalue Problems [421] --
7.1. Initial Value or “Shooting” Methods [424] --
7.2. Finite Difference Methods [427] --
7.3. Eigenvalue Problems [434] --
Chapter 9 Difference Methods for Partial Differential Equations --
0. Introduction [442] --
0.1. Conventions of Notation [444] --
1. Laplace Equation in a Rectangle [445] --
1.1. Matrix Formulation [452] --
1.2. An Eigenvalue Problem for the Laplacian Operator [458] --
2. Solution of Laplace Difference Equations [463] --
2.1. Line or Block Iterations [471] --
2.2 Alternating Direction Iterations [475] --
3. Wave Equation and an Equivalent System [479] --
3.1. Difference Approximations and Domains of Dependence [485] --
3.2. Convergence of Difference Solutions [491] --
3.3. Difference Methods for a First Order Hyperbolic System [495] --
4. Heat Equation [501] --
4.1. Implicit Methods [505] --
5. General Theory: Consistency, Convergence, and Stability [514] --
5.1. Further Consequences of Stability [522] --
5.2. The von Neumann Stability Test [523] --
Bibliography [531] --
Index [535] --

MR, 34 #924

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha