Algebra / Serge Lang.
Series Addison-Wesley series in mathematicsEditor: Reading, Mass. : Addison-Wesley, c1965Descripción: xvii, 508 p. ; 24 cmTema(s): AlgebraOtra clasificación: 00A05Part One Groups, Rings, and Modules Chapter I Groups 1. Monoids [5] 2. Groups [9] 3. Cyclic groups [13] 4. Normal subgroups [14] 5. Operation of a group on a set [19] 6. Sylow subgroups [23] 7. Categories and functors [25] 8. Free groups [33] 9. Direct sums and free abelian groups [40] 10. Finitely generated abelian groups [45] 11. The dual group [50] Chapter II Rings 1. Rings and homomorphisms [56] 2. Commutative rings [62] 3. Localization [66] 4. Principal rings [70] Chapter III Modules 1. Basic definitions [74] 2. The group of homomorphisms [76] 3. Direct products and sums of modules [79] 4. Free modules [84] 5. Vector spaces [85] 6. The dual space [88] Chapter IV Homology 1. Complexes [94] 2. Homology sequence [95] 3. Euler characteristic [98] 4. The Jordan-Hdlder theorem [192] Chapter V Polynomials 1. Free algebras [106] 2. Definition of polynomials [110] 3. Elementary properties of polynomials [115] 4. The Euclidean algorithm [120] 5. Partial fractions [123] 6. Unique factorization in several variables [126] 7. Criteria for irreducibility [128] 8. The derivative and multiple roots [130] 9. Symmetric polynomials [132] 10. The resultant [135] Chapter VI Noetherian Rings and Modules 1. Basic criteria [142] 2. Hilbert’s theorem [144] 3. Power series [146] 4. Associated primes [148] 5. Primary decomposition [152] Part Two Field Theory Chapter VII Algebraic Extensions 1. Finite and algebraic extensions [161] 2. Algebraic closure [166] 3. Splitting fields and normal extensions [173] 4. Separable extensions [176] 5. Finite fields [182] 6. Primitive elements [185] 7. Purely inseparable extensions [186] Chapter VIII Galois Theory 1. Galois extensions [192] 2. Examples and applications [199] 3. Roots of unity [203] 4. Linear independence of characters [208] 5. The norm and trace [210] 6. Cyclic extensions [213] 7. Solvable and radical extensions [216] 8. Kummer theory [218] 9. The equation Xn — a = 0 [221] 10. Galois cohomology [224] 11. Algebraic independence of homomorphisms [225] 12. The normal basis theorem [229] Chapter IX Extensions of Rings 1. Integral ring extensions [237] 2. Integral Galois extensions [244] 3. Extension of homomorphisms [249] Chapter X Transcendental Extensions 1. Transcendence bases [253] 2. Hilbert’s Nulls tellensatz [255] 3. Algebraic sets [257] 4. Noether normalization theorem [260] 5. Linearly disjoint extensions [261] 6. Separable extensions [264] 7. Derivations [266] Chapter XI Real Fields 1. Ordered fields [271] 2. Real fields [273] 3. Real zeros and homomorphisms [278] Chapter XII Absolute Values 1. Definition, dependence, and independence [283] 2. Completions [286] 3. Finite extensions [292] 4. Valuations [296] 5. Completions and valuations [304] 6. Discrete valuations [305] 7. Zeros of polynomials over complete fields [308] Part Three Linear Algebra and Representations Chapter XIII Matrices and Linear Maps 1. Matrices [321] 2. The rank of a matrix [323] 3. Matrices and linear maps [324] 4. Determinants [328] 5. Duality [337] 6. Matrices and bilinear forms [342] 7. Sesquilinear duality [346] Chapter XIV Structure of Bilinear Forms 1. Preliminaries, orthogonal sums [354] 2. Quadratic maps [357] 3. Symmetric forms, orthogonal bases [358] 4. Hyperbolic spaces [359] 5. Witt’s theorem [360] 6. The Witt group [363] 7. Symmetric forms over ordered fields [365] 8. The Clifford algebra [367] 9. Alternating forms [370] 10. The Pfaffian [372] 11. Hermitian forms [374] 12. The spectral theorem (hermitian case) [376] 13. The spectral theorem (symmetric case) [378] Chapter XV Representation of One Endomorphism 1. Representations [384] 2. Modules over principal rings [386] 3. Decomposition over one endomorphism [395] 4. The characteristic polynomial [399] Chapter XVI Multilinear Products 1. Tensor product [408] 2. Basic properties [412] 3. Extension of the base [418] 4. Tensor product of algebras [420] 5. The tensor algebra of a module [421] 6. Alternating products [424] 7. Symmetric products [427] 8. The Euler-Grothendieck ring [429] 9. Some functorial isomorphisms [431] Chapter XVII Semisimplicity 1. Matrices and linear maps over non-commutative rings [438] 2. Conditions defining semisimplicity [441] 3. The density theorem [443] 4. Semisimple rings [446] 5. Simple rings [448] Chapter XVIII Representations of Finite Groups 1. Semisimplicity of the group algebra [453] 2. Characters [455] 3. One-dimensional representations [459] 4. The space of class functions [461] 5. Orthogonality relations [465] 6. Induced characters [468] 7. Induced representations [471] 8. Positive decomposition of the regular character [475] 9. Supersolvable groups [478] 10. Brauer’s theorem [480] 11. Field of definition of a representation [485] Appendix. The transcendence of e and п [493] Index [501]
Item type | Home library | Shelving location | Call number | Materials specified | Status | Date due | Barcode | Course reserves |
---|---|---|---|---|---|---|---|---|
![]() |
Instituto de Matemática, CONICET-UNS | Libros ordenados por tema | 00A05A L269 (Browse shelf) | Available | A-2364 |
Bibliografía: p. xii.
Part One --
Groups, Rings, and Modules --
Chapter I --
Groups --
1. Monoids [5] --
2. Groups [9] --
3. Cyclic groups [13] --
4. Normal subgroups [14] --
5. Operation of a group on a set [19] --
6. Sylow subgroups [23] --
7. Categories and functors [25] --
8. Free groups [33] --
9. Direct sums and free abelian groups [40] --
10. Finitely generated abelian groups [45] --
11. The dual group [50] --
Chapter II --
Rings --
1. Rings and homomorphisms [56] --
2. Commutative rings [62] --
3. Localization [66] --
4. Principal rings [70] --
Chapter III --
Modules --
1. Basic definitions [74] --
2. The group of homomorphisms [76] --
3. Direct products and sums of modules [79] --
4. Free modules [84] --
5. Vector spaces [85] --
6. The dual space [88] --
Chapter IV --
Homology --
1. Complexes [94] --
2. Homology sequence [95] --
3. Euler characteristic [98] --
4. The Jordan-Hdlder theorem [192] --
Chapter V --
Polynomials --
1. Free algebras [106] --
2. Definition of polynomials [110] --
3. Elementary properties of polynomials [115] --
4. The Euclidean algorithm [120] --
5. Partial fractions [123] --
6. Unique factorization in several variables [126] --
7. Criteria for irreducibility [128] --
8. The derivative and multiple roots [130] --
9. Symmetric polynomials [132] --
10. The resultant [135] --
Chapter VI --
Noetherian Rings and Modules --
1. Basic criteria [142] --
2. Hilbert’s theorem [144] --
3. Power series [146] --
4. Associated primes [148] --
5. Primary decomposition [152] --
Part Two --
Field Theory --
Chapter VII --
Algebraic Extensions --
1. Finite and algebraic extensions [161] --
2. Algebraic closure [166] --
3. Splitting fields and normal extensions [173] --
4. Separable extensions [176] --
5. Finite fields [182] --
6. Primitive elements [185] --
7. Purely inseparable extensions [186] --
Chapter VIII --
Galois Theory --
1. Galois extensions [192] --
2. Examples and applications [199] --
3. Roots of unity [203] --
4. Linear independence of characters [208] --
5. The norm and trace [210] --
6. Cyclic extensions [213] --
7. Solvable and radical extensions [216] --
8. Kummer theory [218] --
9. The equation Xn — a = 0 [221] --
10. Galois cohomology [224] --
11. Algebraic independence of homomorphisms [225] --
12. The normal basis theorem [229] --
Chapter IX --
Extensions of Rings --
1. Integral ring extensions [237] --
2. Integral Galois extensions [244] --
3. Extension of homomorphisms [249] --
Chapter X --
Transcendental Extensions --
1. Transcendence bases [253] --
2. Hilbert’s Nulls tellensatz [255] --
3. Algebraic sets [257] --
4. Noether normalization theorem [260] --
5. Linearly disjoint extensions [261] --
6. Separable extensions [264] --
7. Derivations [266] --
Chapter XI --
Real Fields --
1. Ordered fields [271] --
2. Real fields [273] --
3. Real zeros and homomorphisms [278] --
Chapter XII --
Absolute Values --
1. Definition, dependence, and independence [283] --
2. Completions [286] --
3. Finite extensions [292] --
4. Valuations [296] --
5. Completions and valuations [304] --
6. Discrete valuations [305] --
7. Zeros of polynomials over complete fields [308] --
Part Three --
Linear Algebra and Representations --
Chapter XIII --
Matrices and Linear Maps --
1. Matrices [321] --
2. The rank of a matrix [323] --
3. Matrices and linear maps [324] --
4. Determinants [328] --
5. Duality [337] --
6. Matrices and bilinear forms [342] --
7. Sesquilinear duality [346] --
Chapter XIV --
Structure of Bilinear Forms --
1. Preliminaries, orthogonal sums [354] --
2. Quadratic maps [357] --
3. Symmetric forms, orthogonal bases [358] --
4. Hyperbolic spaces [359] --
5. Witt’s theorem [360] --
6. The Witt group [363] --
7. Symmetric forms over ordered fields [365] --
8. The Clifford algebra [367] --
9. Alternating forms [370] --
10. The Pfaffian [372] --
11. Hermitian forms [374] --
12. The spectral theorem (hermitian case) [376] --
13. The spectral theorem (symmetric case) [378] --
Chapter XV --
Representation of One Endomorphism --
1. Representations [384] --
2. Modules over principal rings [386] --
3. Decomposition over one endomorphism [395] --
4. The characteristic polynomial [399] --
Chapter XVI --
Multilinear Products --
1. Tensor product [408] --
2. Basic properties [412] --
3. Extension of the base [418] --
4. Tensor product of algebras [420] --
5. The tensor algebra of a module [421] --
6. Alternating products [424] --
7. Symmetric products [427] --
8. The Euler-Grothendieck ring [429] --
9. Some functorial isomorphisms [431] --
Chapter XVII --
Semisimplicity --
1. Matrices and linear maps over non-commutative rings [438] --
2. Conditions defining semisimplicity [441] --
3. The density theorem [443] --
4. Semisimple rings [446] --
5. Simple rings [448] --
Chapter XVIII --
Representations of Finite Groups --
1. Semisimplicity of the group algebra [453] --
2. Characters [455] --
3. One-dimensional representations [459] --
4. The space of class functions [461] --
5. Orthogonality relations [465] --
6. Induced characters [468] --
7. Induced representations [471] --
8. Positive decomposition of the regular character [475] --
9. Supersolvable groups [478] --
10. Brauer’s theorem [480] --
11. Field of definition of a representation [485] --
Appendix. The transcendence of e and п [493] --
Index [501] --
MR, 33 #5416
There are no comments on this title.