Principles of mathematical modeling / Clive L. Dym.

Por: Dym, Clive LEditor: Amsterdam : Elsevier Academic Press, c2004Edición: 2nd edDescripción: xviii, 303 p. : il. ; 24 cmISBN: 0122265513Tema(s): Mathematical modelsOtra clasificación: 00A71 (01-01 00A69 00A73 41A10 62-99 65D10) Recursos en línea: Table of contents | Publisher description
Contenidos:
Preface xiii
Acknowledgments xvii
PART A: Foundations [1]
CHAPTER 1 What Is Mathematical Modeling? [3]
1.1 Why Do We Do Mathematical Modeling? [4]
1.1.1 Mathematical Modeling and the Scientific Method [4]
1.1.2 Mathematical Modeling and the Practice of Engineering [5]
1.2 Principles of Mathematical Modeling [6]
1.3 Some Methods of Mathematical Modeling [8]
1.3.1 Dimensional Homogeneity and Consistency [9]
1.3.2 Abstraction and Scaling [9]
1.3.3 Conservation and Balance Principles [10]
1.3.4 Constructing Linear Models [11]
1.4 Summary [11]
1.5 References [12]
CHAPTER 2 Dimensional Analysis [13]
2.1 Dimensions and Units [14]
r 2.2 Dimensional Homogeneity [15]
2.3 Why Do We Do Dimensional Analysis? [16]
2.4 How Do We Do Dimensional Analysis? [19]
2.4.1 The Basic Method of Dimensional Analysis [20]
2.4.2 The Buckingham Pi Theorem for
Dimensional Analysis [24]
2.5 Systems of Units [28]
2.6 Summary [30]
2.7 References [31]
2.8 Problems [31]
CHAPTER 3 Scale [33]
3.1 Abstraction and Scale [33]
3.2 Size and Shape: Geometric Scaling [35]
3.2.1 Geometric Scaling and Flight Muscle Fractions in Birds [36]
3.2.2 Linearity and Geometric Scaling [37]
3.2.3 "Log-log" Plots of Geometric Scaling Data [38]
3.3 Size and Function-I: Birds and Flight [44]
3.3.1 The Power Needed for Hovering [45]
3.3.2 The Power Available for Hovering [46]
3.3.3 So There Is a Hovering Limit [47]
3.4 Size and Function-ll: Hearing and Speech [47]
3.4.1 Hearing Depends on Size [48]
3.4.2 Speech Depends on Size [50]
3.5 Size and Limits: Scale in Equations [51]
3.5.1 When a Model Is No Longer Applicable [52]
3.5.2 Scaling in Equations [52]
3.5.3 Characteristic Times [54]
3.6 Consequences of Choosing a Scale [55]
3.6.1 Scaling and Data Acquisition [55]
3.6.2 Scaling and the Design of Experiments [59]
3.6.3 Scaling and Perceptions of Presented Data [62]
3.7 Summary [65]
3.8 References [66]
3.9 Problems [67]
CHAPTER 4 Approximating and Validating
Models [71]
4.1 Taylor's Formula [71]
4.1.1 Taylor's Formula and Series [72]
4.1.2 Taylor Series of Trigonometric and Hyperbolic Functions [74]
4.1.3 Binomial Expansions [78]
4.2 Algebraic Approximations [82]
4.3 Numerical Approximations: Significant Figures [84]
4.4 Validating the Model-I: How Do We Know the Model Is OK? [88]
4.4.1 Checking Dimensions and Units [89]
4.4.2 Checking Qualitative and Limit Behavior [91]
4.5 Validating the Model-ll: How Large Are the Errors? [92]
4.5.1 Error [93]
4.5.2 Accuracy and Precision [94]
4.6 Fitting Curves to Data [96]
4.7 Elementary Statistics [99]
4.7.1 Mean, Median, and Standard Deviation [100]
4.7.2 Histograms [102]
4.8 Summary [106]
4.9 Appendix: Elementary Transcendental Functions [107]
4.10 References [110]
4.11 Problems [111]
PART B: Applications [115]
CHAPTER 5 Exponential Growth and Decay [117]
5.1 How Do Things Get So Out of Hand? [117]
5.2 Exponential Functions and Their Differential Equations [122]
5.2.1 Calculating and Displaying Exponential Functions [122]
5.2.2 The First-Order Differential Equation dN/dt-λN = 0 [126]
5.3 Radioactive Decay [127]
5.4 Charging and Discharging a Capacitor [130]
5.4.1 A Capacitor Discharges [131]
5.4.2 A Capacitor Is Charged [133]
5.5 Exponential Models in Money Matters [136]
5.5.1 Compound Interest [136]
5.5.2 Inflation [138]
5.6 A Nonlinear Model of Population Growth [141]
5.7 A Coupled Model of Fighting Armies [144]
5.8 Summary [147]
5.9 References [147]
5.10 Problems [148]
CHAPTER 6 Traffic Flow Models [151]
6.1 Can We Really Make Sense of Freeway Traffic? [151]
6.2 Macroscopic Traffic Flow Models [152]
6.2.1 Conservation of Cars [153]
6.2.2 Relating Traffic Speed to Traffic Density [155]
6.2.3 Relating Traffic Flow to Traffic Density: The Fundamental Diagram [156]
6.2.4 The Continuum Hypothesis in Macroscopic Traffic Modeling [159]
6.3 Microscopic Traffic Models [162]
6.3.1 An Elementary, Linear Car-following Model [162]
6.3.2 An Alternate Derivation of the Same Model [169]
6.3.3 Comments on Car-following Models [170]
6.4 Summary [171]
6.5 References [171]
6.6 Problems [172]
CHAPTER 7 Modeling Free Vibration [175]
7.1 The Freely-Vibrating Pendulum-I: Formulating a Model [176]
7.1.1 Some Experimental Results [176]
7.1.2 Dimensional Analysis [178]
7.1.3 Equations of Motion [179]
7.1.4 More Dimensional Analysis [182]
7.1.5 Conserving Energy as the Pendulum Moves [184]
7.1.6 Dissipating Energy as the Pendulum Moves [186]
7.2 The Freely-Vibrating Pendulum-ll: The Linear Model [188]
7.2.1 Linearizing the Nonlinear Model [188]
7.2.2 The Differential Equation md2x/dt2 + kx = 0 [191]
7.2.3 The Linear Model [192]
7.3 The Spring-Mass Oscillator-I: Physical Interpretations [194]
7.4 Stability of a Two-mass Pendulum [195]
7.5 The Freely-Vibrating Pendulum-Ill: The Nonlinear Model [199]
7.6 Modeling the Population Growth of Coupled Species [201]
7.6.1 Qualitative Solution for the Nonlinear Model [203]
7.6.2 Oscillatory Solution for the Linearized Model [204]
7.7 Summary [206]
7.8 References [207]
7.9 Problems [208]
CHAPTER 8 Applying Vibration Models [211]
8.1 The Spring-Mass Oscillator-ll: Extensions and Analogies [212]
8.1.1 Restoring and Dissipative Forces and Elements [215]
8.1.2 Electric Circuits and the Electrical-Mechanical Analogy [216]
8.2 The Fundamental Period of a Tall, Slender Building [221]
8.3 The Cyclotron Frequency [225]
8.4 The Fundamental Frequency of an Acoustic Resonator [228]
8.5 Forcing Vibration: Modeling an Automobile Suspension [232]
8.6 The Differential Equation md2x/dt2 + kx = F(f) [234]
8.7 Resonance and Impedance in Forced Vibration [236]
8.8 Summary [240]
8.9 References [241]
8.10 Problems [242]
CHAPTER 9 Optimization: What Is the Best [247]
9.1 Continuous Optimization Modeling [248]
9.2 Optimization with Linear Programming [253]
9.2.1 Maximizing Profit in the Furniture Business [255]
9.2.2 On Linear Programming and Extensions [258]
9.2.3 On Defining and Assessing Optima [259]
9.3 The Transportation Problem [260]
9.4 Choosing the Best Alternative [265]
9.4.1 Rankings and Pairwise Comparisons [265]
9.4.2 Borda Counts and Pairwise Comparisons [267]
9.4.3 Pairwise Comparisons and Rank Reversals [270]
9.4.4 Pay Attention to All of the Data [271]
9.4.5 On Pairwise Comparisons and Making Decisions [273]
9.5 A Miscellany of Optimization Problems [275]
9.5.1 Is There Enough Energy to Create a Sphere? [276]
9.5.2 Maximizing the Range of Planes and Birds [278]
9.5.3 Geometric Programming for a Plane's Optimum Speed [282]
9.5.4 The Lightest Diving Board (or Cantilever Beam) [286]
9.6 Summary [290]
9.7 References [291]
9.8 Problems [293]
Index [297]
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 00A71 D997 (Browse shelf) Available A-8491

MODELOS MATEMÁTICOS PARA LA FÍSICA


Incluye referencias bibliográficas e índice.

Preface xiii --
Acknowledgments xvii --
PART A: Foundations [1] --
CHAPTER 1 What Is Mathematical Modeling? [3] --
1.1 Why Do We Do Mathematical Modeling? [4] --
1.1.1 Mathematical Modeling and the Scientific Method [4] --
1.1.2 Mathematical Modeling and the Practice of Engineering [5] --
1.2 Principles of Mathematical Modeling [6] --
1.3 Some Methods of Mathematical Modeling [8] --
1.3.1 Dimensional Homogeneity and Consistency [9] --
1.3.2 Abstraction and Scaling [9] --
1.3.3 Conservation and Balance Principles [10] --
1.3.4 Constructing Linear Models [11] --
1.4 Summary [11] --
1.5 References [12] --
CHAPTER 2 Dimensional Analysis [13] --
2.1 Dimensions and Units [14] --
r 2.2 Dimensional Homogeneity [15] --
2.3 Why Do We Do Dimensional Analysis? [16] --
2.4 How Do We Do Dimensional Analysis? [19] --
2.4.1 The Basic Method of Dimensional Analysis [20] --
2.4.2 The Buckingham Pi Theorem for --
Dimensional Analysis [24] --
2.5 Systems of Units [28] --
2.6 Summary [30] --
2.7 References [31] --
2.8 Problems [31] --
CHAPTER 3 Scale [33] --
3.1 Abstraction and Scale [33] --
3.2 Size and Shape: Geometric Scaling [35] --
3.2.1 Geometric Scaling and Flight Muscle Fractions in Birds [36] --
3.2.2 Linearity and Geometric Scaling [37] --
3.2.3 "Log-log" Plots of Geometric Scaling Data [38] --
3.3 Size and Function-I: Birds and Flight [44] --
3.3.1 The Power Needed for Hovering [45] --
3.3.2 The Power Available for Hovering [46] --
3.3.3 So There Is a Hovering Limit [47] --
3.4 Size and Function-ll: Hearing and Speech [47] --
3.4.1 Hearing Depends on Size [48] --
3.4.2 Speech Depends on Size [50] --
3.5 Size and Limits: Scale in Equations [51] --
3.5.1 When a Model Is No Longer Applicable [52] --
3.5.2 Scaling in Equations [52] --
3.5.3 Characteristic Times [54] --
3.6 Consequences of Choosing a Scale [55] --
3.6.1 Scaling and Data Acquisition [55] --
3.6.2 Scaling and the Design of Experiments [59] --
3.6.3 Scaling and Perceptions of Presented Data [62] --
3.7 Summary [65] --
3.8 References [66] --
3.9 Problems [67] --
CHAPTER 4 Approximating and Validating --
Models [71] --
4.1 Taylor's Formula [71] --
4.1.1 Taylor's Formula and Series [72] --
4.1.2 Taylor Series of Trigonometric and Hyperbolic Functions [74] --
4.1.3 Binomial Expansions [78] --
4.2 Algebraic Approximations [82] --
4.3 Numerical Approximations: Significant Figures [84] --
4.4 Validating the Model-I: How Do We Know the Model Is OK? [88] --
4.4.1 Checking Dimensions and Units [89] --
4.4.2 Checking Qualitative and Limit Behavior [91] --
4.5 Validating the Model-ll: How Large Are the Errors? [92] --
4.5.1 Error [93] --
4.5.2 Accuracy and Precision [94] --
4.6 Fitting Curves to Data [96] --
4.7 Elementary Statistics [99] --
4.7.1 Mean, Median, and Standard Deviation [100] --
4.7.2 Histograms [102] --
4.8 Summary [106] --
4.9 Appendix: Elementary Transcendental Functions [107] --
4.10 References [110] --
4.11 Problems [111] --
PART B: Applications [115] --
CHAPTER 5 Exponential Growth and Decay [117] --
5.1 How Do Things Get So Out of Hand? [117] --
5.2 Exponential Functions and Their Differential Equations [122] --
5.2.1 Calculating and Displaying Exponential Functions [122] --
5.2.2 The First-Order Differential Equation dN/dt-λN = 0 [126] --
5.3 Radioactive Decay [127] --
5.4 Charging and Discharging a Capacitor [130] --
5.4.1 A Capacitor Discharges [131] --
5.4.2 A Capacitor Is Charged [133] --
5.5 Exponential Models in Money Matters [136] --
5.5.1 Compound Interest [136] --
5.5.2 Inflation [138] --
5.6 A Nonlinear Model of Population Growth [141] --
5.7 A Coupled Model of Fighting Armies [144] --
5.8 Summary [147] --
5.9 References [147] --
5.10 Problems [148] --
CHAPTER 6 Traffic Flow Models [151] --
6.1 Can We Really Make Sense of Freeway Traffic? [151] --
6.2 Macroscopic Traffic Flow Models [152] --
6.2.1 Conservation of Cars [153] --
6.2.2 Relating Traffic Speed to Traffic Density [155] --
6.2.3 Relating Traffic Flow to Traffic Density: The Fundamental Diagram [156] --
6.2.4 The Continuum Hypothesis in Macroscopic Traffic Modeling [159] --
6.3 Microscopic Traffic Models [162] --
6.3.1 An Elementary, Linear Car-following Model [162] --
6.3.2 An Alternate Derivation of the Same Model [169] --
6.3.3 Comments on Car-following Models [170] --
6.4 Summary [171] --
6.5 References [171] --
6.6 Problems [172] --
CHAPTER 7 Modeling Free Vibration [175] --
7.1 The Freely-Vibrating Pendulum-I: Formulating a Model [176] --
7.1.1 Some Experimental Results [176] --
7.1.2 Dimensional Analysis [178] --
7.1.3 Equations of Motion [179] --
7.1.4 More Dimensional Analysis [182] --
7.1.5 Conserving Energy as the Pendulum Moves [184] --
7.1.6 Dissipating Energy as the Pendulum Moves [186] --
7.2 The Freely-Vibrating Pendulum-ll: The Linear Model [188] --
7.2.1 Linearizing the Nonlinear Model [188] --
7.2.2 The Differential Equation md2x/dt2 + kx = 0 [191] --
7.2.3 The Linear Model [192] --
7.3 The Spring-Mass Oscillator-I: Physical Interpretations [194] --
7.4 Stability of a Two-mass Pendulum [195] --
7.5 The Freely-Vibrating Pendulum-Ill: The Nonlinear Model [199] --
7.6 Modeling the Population Growth of Coupled Species [201] --
7.6.1 Qualitative Solution for the Nonlinear Model [203] --
7.6.2 Oscillatory Solution for the Linearized Model [204] --
7.7 Summary [206] --
7.8 References [207] --
7.9 Problems [208] --
CHAPTER 8 Applying Vibration Models [211] --
8.1 The Spring-Mass Oscillator-ll: Extensions and Analogies [212] --
8.1.1 Restoring and Dissipative Forces and Elements [215] --
8.1.2 Electric Circuits and the Electrical-Mechanical Analogy [216] --
8.2 The Fundamental Period of a Tall, Slender Building [221] --
8.3 The Cyclotron Frequency [225] --
8.4 The Fundamental Frequency of an Acoustic Resonator [228] --
8.5 Forcing Vibration: Modeling an Automobile Suspension [232] --
8.6 The Differential Equation md2x/dt2 + kx = F(f) [234] --
8.7 Resonance and Impedance in Forced Vibration [236] --
8.8 Summary [240] --
8.9 References [241] --
8.10 Problems [242] --
CHAPTER 9 Optimization: What Is the Best [247] --
9.1 Continuous Optimization Modeling [248] --
9.2 Optimization with Linear Programming [253] --
9.2.1 Maximizing Profit in the Furniture Business [255] --
9.2.2 On Linear Programming and Extensions [258] --
9.2.3 On Defining and Assessing Optima [259] --
9.3 The Transportation Problem [260] --
9.4 Choosing the Best Alternative [265] --
9.4.1 Rankings and Pairwise Comparisons [265] --
9.4.2 Borda Counts and Pairwise Comparisons [267] --
9.4.3 Pairwise Comparisons and Rank Reversals [270] --
9.4.4 Pay Attention to All of the Data [271] --
9.4.5 On Pairwise Comparisons and Making Decisions [273] --
9.5 A Miscellany of Optimization Problems [275] --
9.5.1 Is There Enough Energy to Create a Sphere? [276] --
9.5.2 Maximizing the Range of Planes and Birds [278] --
9.5.3 Geometric Programming for a Plane's Optimum Speed [282] --
9.5.4 The Lightest Diving Board (or Cantilever Beam) [286] --
9.6 Summary [290] --
9.7 References [291] --
9.8 Problems [293] --
Index [297] --

Zbl, 1057.00008

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha