Advanced engineering mathematics / Erwin Kreyszig.

Por: Kreyszig, ErwinEditor: Hoboken, NJ : Wiley, c2006Edición: 9th edDescripción: xvii, 1094 [128] p. : il. ; 27 cmISBN: 0471488852 (cloth); 0471728977 (hbk.); 0471726443 (pbk.); 0471726451 (pbk.); 047172646X (pbk.); 9780471488859Tema(s): Mathematical physics | Engineering mathematicsOtra clasificación: 00A06 Recursos en línea: Table of contents | Sitio web del libro
Contenidos:
PART A
Ordinary Differential Equations (ODEs) [1]
CHAPTER 1 First-Order ODEs [2]
1.1 Basic Concepts. Modeling [2]
1.2 Geometric Meaning of y' — f(x, y). Direction Helds [9]
1.3 Separable ODEs. Modeling [12]
1.4 Exact ODEs. Integrating Factors [19]
1.5 linear ODEs. Bernoulli Equation. Population Dynamics [26]
1.6 Orthogonal Trajectories. Optional [35]
1.7 Existence and Uniqueness of Solutions [37]
Chapter 1 Review Questions and Problems [42]
Summary' of Chapter 1 [43]
CHAPTER 2 Second-Order Linear ODEs [45]
2.1 Homogeneous Linear ODEs of Second Order [45]
2.2 Homogeneous Linear ODEs with Constant Coefficients [53]
2.3 Differential Operators. Optional [59]
2.4 Modeling: Free Oscillations. (Mass-Spring System) [61]
2.5 Euler-Cauchy Equations [69]
2.6 Existence and Uniqueness of Solutions. Wronskian [73]
2.7 Nonhomogeneous ODEs [78]
2.8 Modeling: Forced Oscillations. Resonance [84]
2.9 Modeling: Electric Circuits [91]
2.10 Solution by Variation of Parameters [98]
Chapter 2 Review Questions and Problems [102]
Summary of Chapter 2 [103]
CHAPTER 3 Higher Order Linear ODEs [105]
3.1 Homogeneous Linear ODEs [105]
3.2 Homogeneous Linear ODEs with Constant Coefficients [111]
3.3 Nonhomogeneous Linear ODEs [116]
Chapter 3 Review Questions and Problems [122]
Summary of Chapter 3 [123]
CHAPTER 4 Systems of ODEs. Phase Plane. Qualitative Methods [124]
4.0 Basics of Matrices and Vectors [124]
4.1 Systems of ODEs as Models [130]
4.2 Basic Theory of Systems of ODEs [136]
4.3 Constant-Coefficient Systems. Phase Plane Method [139]
4.4 Criteria for Critical Points. Stability [147]
4.5 Qualitative Methods for Nonlinear Systems [151]
4.6 Nonhomogeneous Linear Systems of ODEs [159]
Chapter 4 Review Questions and Problems [163]
Summary of Chapter 4 [164]
chapter 5 Series Solutions of ODEs. Special Functions [166]
5.1 Power Series Method [167]
5.2 Theory of the Power Series Method [170]
53 Legendre’s Equation. Legendre Polynomials Pn(x) [177]
5.4 Frobenius Method [182]
5.5 Bessel’s Equation. Bessel Functions Jv(x) [189]
5.6 Bessel Functions of the Second Kind yv(x) [198]
5.7 Sturm-Liouville Problems. Orthogonal Functions [203]
5.8 Orthogonal Eigenfunction Expansions [210]
Chapter 5 Review Questions and Problems [217]
Summary of Chapter 5 [218]
CHAPTER 6 Laplace Transforms [220]
6.1 Laplace Transform. Inverse Transform. Linearity. ^-Shifting [221]
6.2 Transforms of Derivatives and Integrals. ODEs [227]
63 Unit Step Function. t-Shifting [233]
6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions [241]
6.5 Convolution. Integral Equations [248]
6.6 Differentiation and Integration of Transforms. [254]
6.7 Systems of ODEs [258]
6.8 Laplace Transform: General Formulas [264]
6.9 Table of Laplace Transforms [265]
Chapter 6 Review Questions and Problems [267]
Summary of Chapter 6 [269]
PART B
Linear Algebra. Vector Calculus [271]
CHAPTER 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems [272]
7.1 Matrices, Vectors: Addition and Scalar Multiplication [272]
7.2 Matrix Multiplication [278]
7.3 Linear Systems of Equations. Gauss Elimination [287]
7.4 Linear Independence. Rank of a Matrix. Vector Space [296]
7.5 Solutions of Linear Systems: Existence, Uniqueness [302]
7.6 For Reference: Second- and Third-Order Determinants [306]
7.7 Determinants. Cramer’s Rule [308]
7.8 Inverse of a Matrix. Gauss-Jordan Elimination [315]
7.9 Vector Spaces, Inner Product Spaces. Linear Transformations. Optional [323]
Chapter 7 Review Questions and Problems [330]
Summary of Chapter 7 [331]
CHAPTER 8 Linear Algebra: Matrix Eigenvalue Problems [333]
8.1 Eigenvalues, Eigenvectors [334]
8.2 Some Applications of Eigenvalue Problems [340]
8.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices [345]
8.4 Eigenbases. Diagonalization. Quadratic Forms [349]
8.5 Complex Matrices and Forms. Optional [356]
Chapter 8 Review Questions and Problems [362]
Summary of Chapter 8 [363]
chapter 9 Vector Differential Calculus. Grad. Div. Curl [364]
9.1 Vectors in 2-Space and 3-Space [364]
9.2 Inner Product (Dot Product) [371]
9.3 Vector Product (Cross Product) [377]
9.4 Vector and Scalar Functions and Fields. Derivatives [384]
9.5 Curves. Arc Length. Curvature. Torsion [389]
9.6 Calculus Review: Functions of Several Variables. Optional [400]
9.7 Gradient of a Scalar Field. Directional Derivative [403]
9.8 Divergence of a Vector Field [410]
9.9 Curl of a Vector Held [414]
Chapter 9 Review Questions and Problems [416]
Summary of Chapter 9 [417]
chapter 10 Vector Integral Calculus. Integral Theorems [420]
10.1 Line Integrals [420]
102 Path Independence of Line Integrals [426]
103 Calculus Review : Double Integrals. Optional [433]
10.4 Green's Theorem in the Plane [439]
10.5 Surfaces for Surface Integrals [445]
10.6 Surface Integrals [449]
10.7 Triple Integrals. Divergence Theorem of Gauss [458]
10.8 Further Applications of the Divergence Theorem [463]
10.9 Stokes's Theorem [468]
Chapter 10 Review Questions and Problems [473]
Summary of Chapter 10 [474]
PART C
Fourier Analysis. Partial Differential Equations (PDEs) [477]
chapter 11 Fourier Series, Integrals, and Transforms [478]
11.1 Fourier Series [478]
11.2 Functions of Any Period p = 2L [487]
11.3 Even and Odd Functions. Half-Range Expansions [490]
11.4 Complex Fourier Series. Optional [496]
11.5 Forced Oscillations [499]
11.6 Approximation by Trigonometric Polynomials [502]
11.7 Fourier Integral [506]
11.8 Fourier Cosine and Sine Transforms [513]
11.9 Fourier Transform. Discrete and Fast Fourier Transforms [518]
1110 Tables of Transforms [529]
Chapter 11 Review Questions and Problems [532]
Summary of Chapter 11 [533]
chapter 12 Partial Differential Equations (PDEs) [535]
12.1 Basic Concepts [535]
12.2 Modeling: Vibrating String, Wave Equation [538]
12.3 Solution by Separating Variables. Use of Fourier Series [540]
12.4 D’Alembert’s Solution of the Wave Equation. Characteristics [548]
12.5 Heat Equation: Solution by Fourier Series [552]
12.6 Heat Equation: Solution by Fourier Integrals and Transforms [562]
12.7 Modeling: Membrane, Two-Dimensional Wave Equation [569]
12.8 Rectangular Membrane. Double Fourier Series [571]
12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series [579]
12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential [587]
12.11 Solution of PDEs by Laplace Transforms 594 Chapter 12 Review Questions and Problems 597 Summary of Chapter 12 [598]
PART D Complex Analysis [601]
CHAPTER 13 Complex Numbers and Functions [602]
13.1 Complex Numbers. Complex Plane [602]
13.2 Polar Form of Complex Numbers. Powers and Roots [607]
13.3 Derivative. Analytic Function [612]
13.4 Cauchy-Riemann Equations. Laplace’s Equation [618]
13.5 Exponential Function [623]
13.6 Trigonometric and Hyperbolic Functions [626]
13.7 Logarithm. General Power [630]
Chapter 13 Review Questions and Problems [634]
Summary of Chapter 13 [635]
CHAPTER 14 Complex Integration [637]
14.1 Line Integral in the Complex Plane [637]
14.2 Cauchy’s Integral Theorem [646]
14.3 Cauchy’s Integral Formula [654]
14.4 Derivatives of Analytic Functions [658]
Chapter 14 Review Questions and Problems [662]
Summary of Chapter 14 [663]
CHAPTER 15 Power Series, Taylor Series [664]
15.1 Sequences, Series, Convergence Tests [664]
15.2 Power Series [673]
15.3 Functions Given by Power Series [678]
15.4 Taylor and Maclaurin Series [683]
15.5 Uniform Convergence. Optional 691 Chapter 15 Review Questions and Problems 698 Summary of Chapter 15 [699]
CHAPTER 16 Laurent Series. Residue Integration [701]
16.1 Laurent Series [701]
16.2 Singularities and Zeros. Infinity [707]
16.3 Residue Integration Method [712]
16.4 Residue Integration of Real Integrals 718 Chapter 16 Review Questions and Problems 726 Summary of Chapter 16 [727]
CHAPTER 17 Conformal Mapping [728]
17.1 Geometry of Analytic Functions: Conformal Mapping [729]
17.2 Linear Fractional Transformations [734]
17.3 Special Linear Fractional Transformations [737]
17.4 Conformal Mapping by Other Functions [742]
17.5 Riemann Surfaces. Optional [746]
Chapter 17 Review Questions and Problems [747]
Summary of Chapter 17 [748]
chapter 18 Complex Analysis and Potential Theory [749]
18.1 Electrostatic Fields [750]
18.2 Use of Conformal Mapping. Modeling [754]
18.3 Heat Problems [757]
18.4 Fluid Flow [761]
18.5 Poisson’s Integral Formula for Potentials [768]
18.6 General Properties of Harmonic Functions [771]
Chapter 18 Review Questions and Problems [775]
Summary of Chapter 18 [776]
Numeric Analysis 777 Software [778]
chapter 19 Numerics in General [780]
19.1 Introduction [780]
19.2 Solution of Equations by Iteration [787]
19.3 Interpolation [797]
19.4 Spline Interpolation [810]
19.5 Numeric Integration and Differentiation [817]
Chapter 19 Review Questions and Problems [830]
Summary of Chapter 19 [831]
CHAPTER 20 Numeric Linear Algebra [833]
20.1 Linear Systems: Gauss Elimination [833]
20.2 Linear Systems: LU-Factorization, Matrix Inversion [840]
20.3 Linear Systems: Solution by Iteration [845]
20.4 Linear Systems: I11-Conditioning, Norms [851]
20.5 Least Squares Method [859]
20.6 Matrix Eigenvalue Problems: Introduction [863]
20.7 Inclusion of Matrix Eigenvalues [866]
20.8 Power Method for Eigenvalues [872]
20.9 Tridiagonalization and QR-Factorization [875]
Chapter 20 Review Questions and Problems [883]
Summary of Chapter 20 [884]
CHAPTER 21 Numerics for ODEs and PDEs [886]
21.1 Methods for First-Order ODEs [886]
21.2 Multistep Methods [898]
21.3 Methods for Systems and Higher Order ODEs [902]
21.4 Methods for Elliptic PDEs [909]
21.5 Neumann and Mixed Problems. Irregular Boundary [917]
21.6 Methods for Parabolic PDEs [922]
21.7 Method for Hyperbolic PDEs [928]
Chapter 21 Review Questions and Problems [930]
Summary of Chapter 21 [932]
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Copy number Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 00A06 K92-9 (Browse shelf) Available A-8440

CÁLCULO III

ECUACIONES DIFERENCIALES

MATEMÁTICA APLICADA

MATEMÁTICA AVANZADA

MATEMÁTICA ESPECIAL I

TÓPICOS DE CÁLCULO AVANZADO

Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 00A06 K92-9 (Browse shelf) Ej. 2 Checked out 2022-12-26 A-8704

Incluye referencias bibliográficas e índice.

PART A --
Ordinary Differential Equations (ODEs) [1] --
CHAPTER 1 First-Order ODEs [2] --
1.1 Basic Concepts. Modeling [2] --
1.2 Geometric Meaning of y' — f(x, y). Direction Helds [9] --
1.3 Separable ODEs. Modeling [12] --
1.4 Exact ODEs. Integrating Factors [19] --
1.5 linear ODEs. Bernoulli Equation. Population Dynamics [26] --
1.6 Orthogonal Trajectories. Optional [35] --
1.7 Existence and Uniqueness of Solutions [37] --
Chapter 1 Review Questions and Problems [42] --
Summary' of Chapter 1 [43] --
CHAPTER 2 Second-Order Linear ODEs [45] --
2.1 Homogeneous Linear ODEs of Second Order [45] --
2.2 Homogeneous Linear ODEs with Constant Coefficients [53] --
2.3 Differential Operators. Optional [59] --
2.4 Modeling: Free Oscillations. (Mass-Spring System) [61] --
2.5 Euler-Cauchy Equations [69] --
2.6 Existence and Uniqueness of Solutions. Wronskian [73] --
2.7 Nonhomogeneous ODEs [78] --
2.8 Modeling: Forced Oscillations. Resonance [84] --
2.9 Modeling: Electric Circuits [91] --
2.10 Solution by Variation of Parameters [98] --
Chapter 2 Review Questions and Problems [102] --
Summary of Chapter 2 [103] --
CHAPTER 3 Higher Order Linear ODEs [105] --
3.1 Homogeneous Linear ODEs [105] --
3.2 Homogeneous Linear ODEs with Constant Coefficients [111] --
3.3 Nonhomogeneous Linear ODEs [116] --
Chapter 3 Review Questions and Problems [122] --
Summary of Chapter 3 [123] --
CHAPTER 4 Systems of ODEs. Phase Plane. Qualitative Methods [124] --
4.0 Basics of Matrices and Vectors [124] --
4.1 Systems of ODEs as Models [130] --
4.2 Basic Theory of Systems of ODEs [136] --
4.3 Constant-Coefficient Systems. Phase Plane Method [139] --
4.4 Criteria for Critical Points. Stability [147] --
4.5 Qualitative Methods for Nonlinear Systems [151] --
4.6 Nonhomogeneous Linear Systems of ODEs [159] --
Chapter 4 Review Questions and Problems [163] --
Summary of Chapter 4 [164] --
chapter 5 Series Solutions of ODEs. Special Functions [166] --
5.1 Power Series Method [167] --
5.2 Theory of the Power Series Method [170] --
53 Legendre’s Equation. Legendre Polynomials Pn(x) [177] --
5.4 Frobenius Method [182] --
5.5 Bessel’s Equation. Bessel Functions Jv(x) [189] --
5.6 Bessel Functions of the Second Kind yv(x) [198] --
5.7 Sturm-Liouville Problems. Orthogonal Functions [203] --
5.8 Orthogonal Eigenfunction Expansions [210] --
Chapter 5 Review Questions and Problems [217] --
Summary of Chapter 5 [218] --
CHAPTER 6 Laplace Transforms [220] --
6.1 Laplace Transform. Inverse Transform. Linearity. ^-Shifting [221] --
6.2 Transforms of Derivatives and Integrals. ODEs [227] --
63 Unit Step Function. t-Shifting [233] --
6.4 Short Impulses. Dirac’s Delta Function. Partial Fractions [241] --
6.5 Convolution. Integral Equations [248] --
6.6 Differentiation and Integration of Transforms. [254] --
6.7 Systems of ODEs [258] --
6.8 Laplace Transform: General Formulas [264] --
6.9 Table of Laplace Transforms [265] --
Chapter 6 Review Questions and Problems [267] --
Summary of Chapter 6 [269] --
PART B --
Linear Algebra. Vector Calculus [271] --
CHAPTER 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems [272] --
7.1 Matrices, Vectors: Addition and Scalar Multiplication [272] --
7.2 Matrix Multiplication [278] --
7.3 Linear Systems of Equations. Gauss Elimination [287] --
7.4 Linear Independence. Rank of a Matrix. Vector Space [296] --
7.5 Solutions of Linear Systems: Existence, Uniqueness [302] --
7.6 For Reference: Second- and Third-Order Determinants [306] --
7.7 Determinants. Cramer’s Rule [308] --
7.8 Inverse of a Matrix. Gauss-Jordan Elimination [315] --
7.9 Vector Spaces, Inner Product Spaces. Linear Transformations. Optional [323] --
Chapter 7 Review Questions and Problems [330] --
Summary of Chapter 7 [331] --
CHAPTER 8 Linear Algebra: Matrix Eigenvalue Problems [333] --
8.1 Eigenvalues, Eigenvectors [334] --
8.2 Some Applications of Eigenvalue Problems [340] --
8.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices [345] --
8.4 Eigenbases. Diagonalization. Quadratic Forms [349] --
8.5 Complex Matrices and Forms. Optional [356] --
Chapter 8 Review Questions and Problems [362] --
Summary of Chapter 8 [363] --
chapter 9 Vector Differential Calculus. Grad. Div. Curl [364] --
9.1 Vectors in 2-Space and 3-Space [364] --
9.2 Inner Product (Dot Product) [371] --
9.3 Vector Product (Cross Product) [377] --
9.4 Vector and Scalar Functions and Fields. Derivatives [384] --
9.5 Curves. Arc Length. Curvature. Torsion [389] --
9.6 Calculus Review: Functions of Several Variables. Optional [400] --
9.7 Gradient of a Scalar Field. Directional Derivative [403] --
9.8 Divergence of a Vector Field [410] --
9.9 Curl of a Vector Held [414] --
Chapter 9 Review Questions and Problems [416] --
Summary of Chapter 9 [417] --
chapter 10 Vector Integral Calculus. Integral Theorems [420] --
10.1 Line Integrals [420] --
102 Path Independence of Line Integrals [426] --
103 Calculus Review : Double Integrals. Optional [433] --
10.4 Green's Theorem in the Plane [439] --
10.5 Surfaces for Surface Integrals [445] --
10.6 Surface Integrals [449] --
10.7 Triple Integrals. Divergence Theorem of Gauss [458] --
10.8 Further Applications of the Divergence Theorem [463] --
10.9 Stokes's Theorem [468] --
Chapter 10 Review Questions and Problems [473] --
Summary of Chapter 10 [474] --
PART C --
Fourier Analysis. Partial Differential Equations (PDEs) [477] --
chapter 11 Fourier Series, Integrals, and Transforms [478] --
11.1 Fourier Series [478] --
11.2 Functions of Any Period p = 2L [487] --
11.3 Even and Odd Functions. Half-Range Expansions [490] --
11.4 Complex Fourier Series. Optional [496] --
11.5 Forced Oscillations [499] --
11.6 Approximation by Trigonometric Polynomials [502] --
11.7 Fourier Integral [506] --
11.8 Fourier Cosine and Sine Transforms [513] --
11.9 Fourier Transform. Discrete and Fast Fourier Transforms [518] --
1110 Tables of Transforms [529] --
Chapter 11 Review Questions and Problems [532] --
Summary of Chapter 11 [533] --
chapter 12 Partial Differential Equations (PDEs) [535] --
12.1 Basic Concepts [535] --
12.2 Modeling: Vibrating String, Wave Equation [538] --
12.3 Solution by Separating Variables. Use of Fourier Series [540] --
12.4 D’Alembert’s Solution of the Wave Equation. Characteristics [548] --
12.5 Heat Equation: Solution by Fourier Series [552] --
12.6 Heat Equation: Solution by Fourier Integrals and Transforms [562] --
12.7 Modeling: Membrane, Two-Dimensional Wave Equation [569] --
12.8 Rectangular Membrane. Double Fourier Series [571] --
12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier-Bessel Series [579] --
12.10 Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential [587] --
12.11 Solution of PDEs by Laplace Transforms 594 Chapter 12 Review Questions and Problems 597 Summary of Chapter 12 [598] --
PART D Complex Analysis [601] --
CHAPTER 13 Complex Numbers and Functions [602] --
13.1 Complex Numbers. Complex Plane [602] --
13.2 Polar Form of Complex Numbers. Powers and Roots [607] --
13.3 Derivative. Analytic Function [612] --
13.4 Cauchy-Riemann Equations. Laplace’s Equation [618] --
13.5 Exponential Function [623] --
13.6 Trigonometric and Hyperbolic Functions [626] --
13.7 Logarithm. General Power [630] --
Chapter 13 Review Questions and Problems [634] --
Summary of Chapter 13 [635] --
CHAPTER 14 Complex Integration [637] --
14.1 Line Integral in the Complex Plane [637] --
14.2 Cauchy’s Integral Theorem [646] --
14.3 Cauchy’s Integral Formula [654] --
14.4 Derivatives of Analytic Functions [658] --
Chapter 14 Review Questions and Problems [662] --
Summary of Chapter 14 [663] --
CHAPTER 15 Power Series, Taylor Series [664] --
15.1 Sequences, Series, Convergence Tests [664] --
15.2 Power Series [673] --
15.3 Functions Given by Power Series [678] --
15.4 Taylor and Maclaurin Series [683] --
15.5 Uniform Convergence. Optional 691 Chapter 15 Review Questions and Problems 698 Summary of Chapter 15 [699] --
CHAPTER 16 Laurent Series. Residue Integration [701] --
16.1 Laurent Series [701] --
16.2 Singularities and Zeros. Infinity [707] --
16.3 Residue Integration Method [712] --
16.4 Residue Integration of Real Integrals 718 Chapter 16 Review Questions and Problems 726 Summary of Chapter 16 [727] --
CHAPTER 17 Conformal Mapping [728] --
17.1 Geometry of Analytic Functions: Conformal Mapping [729] --
17.2 Linear Fractional Transformations [734] --
17.3 Special Linear Fractional Transformations [737] --
17.4 Conformal Mapping by Other Functions [742] --
17.5 Riemann Surfaces. Optional [746] --
Chapter 17 Review Questions and Problems [747] --
Summary of Chapter 17 [748] --
chapter 18 Complex Analysis and Potential Theory [749] --
18.1 Electrostatic Fields [750] --
18.2 Use of Conformal Mapping. Modeling [754] --
18.3 Heat Problems [757] --
18.4 Fluid Flow [761] --
18.5 Poisson’s Integral Formula for Potentials [768] --
18.6 General Properties of Harmonic Functions [771] --
Chapter 18 Review Questions and Problems [775] --
Summary of Chapter 18 [776] --
Numeric Analysis 777 Software [778] --
chapter 19 Numerics in General [780] --
19.1 Introduction [780] --
19.2 Solution of Equations by Iteration [787] --
19.3 Interpolation [797] --
19.4 Spline Interpolation [810] --
19.5 Numeric Integration and Differentiation [817] --
Chapter 19 Review Questions and Problems [830] --
Summary of Chapter 19 [831] --
CHAPTER 20 Numeric Linear Algebra [833] --
20.1 Linear Systems: Gauss Elimination [833] --
20.2 Linear Systems: LU-Factorization, Matrix Inversion [840] --
20.3 Linear Systems: Solution by Iteration [845] --
20.4 Linear Systems: I11-Conditioning, Norms [851] --
20.5 Least Squares Method [859] --
20.6 Matrix Eigenvalue Problems: Introduction [863] --
20.7 Inclusion of Matrix Eigenvalues [866] --
20.8 Power Method for Eigenvalues [872] --
20.9 Tridiagonalization and QR-Factorization [875] --
Chapter 20 Review Questions and Problems [883] --
Summary of Chapter 20 [884] --
CHAPTER 21 Numerics for ODEs and PDEs [886] --
21.1 Methods for First-Order ODEs [886] --
21.2 Multistep Methods [898] --
21.3 Methods for Systems and Higher Order ODEs [902] --
21.4 Methods for Elliptic PDEs [909] --
21.5 Neumann and Mixed Problems. Irregular Boundary [917] --
21.6 Methods for Parabolic PDEs [922] --
21.7 Method for Hyperbolic PDEs [928] --
Chapter 21 Review Questions and Problems [930] --
Summary of Chapter 21 [932] --

MR REVIEW #

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha