Normal view

## Logic for mathematicians / A. G. Hamilton.

Editor: Cambridge : Cambridge University Press, 1988Edición: Rev. edDescripción: viii, 228 p. ; 23 cmISBN: 0521368650 (pbk.); 0521218381Tema(s): Logic, Symbolic and mathematicalOtra clasificación: 03-01
Contenidos:
```1 Informal statement calculus
1.1 Statements and connectives [1]
1.2 Truth functions and truth tables [4]
1.3 Rules for manipulation and substitution [10]
1.4 Normal forms [15]
1.5 Adequate sets of connectives [19]
1.6 Arguments and validity [22]
2 Formal statement calculus 2.1 The formal system L [27]
2.2 The Adequacy Theorem for L [37]
3 Informal predicate calculus 3.1 Predicates and quantifiers [45]
3.2 First order languages [49]
3.3 Interpretations [57]
3.4 Satisfaction, truth [59]
3.5 Skolemisation [70]
4 Formal predicate calculus 4.1 The formal system KL [73]
4.2 Equivalence, substitution [80]
4.3 Prenex form [86]
4.4 The Adequacy Theorem for K [92]
4.5 Models [100]
Mathematical systems [105]
5.1 Introduction
5.2 First order systems with equality [106]
5.3 The theory of groups [112]
5.4 First order arithmetic [116]
5.5 Formal set theory [120]
5.6 Consistency and models [125]
6 The Gödel Incompleteness Theorem [128]
6.1 Introduction [130]
6.2 Expressibility [137]
6.3 Recursive functions and relations [146]
6.4 Godel numbers [150]
6.5 The incompleteness proof [156]
7 Computability, unsolvability, undecidability [164]
7.1 Algorithms and computability [183]
7.2 Turing machines [189]
7.3 Word problems [199]
7.4 Undecidability of formal systems [203]
Appendix Countable and uncountable sets [219]
Hints and solutions to selected exercises [220]
References and further reading [224]
Glossary of symbols
Index```
Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode Course reserves
Libros
Libros ordenados por tema 03 H217 (Browse shelf) Available A-6301

Ed. original publicada en 1978.

Bibliografía: p. [219].

1 Informal statement calculus --
1.1 Statements and connectives [1] --
1.2 Truth functions and truth tables [4] --
1.3 Rules for manipulation and substitution [10] --
1.4 Normal forms [15] --
1.5 Adequate sets of connectives [19] --
1.6 Arguments and validity [22] --
2 Formal statement calculus 2.1 The formal system L [27] --
2.2 The Adequacy Theorem for L [37] --
3 Informal predicate calculus 3.1 Predicates and quantifiers [45] --
3.2 First order languages [49] --
3.3 Interpretations [57] --
3.4 Satisfaction, truth [59] --
3.5 Skolemisation [70] --
4 Formal predicate calculus 4.1 The formal system KL [73] --
4.2 Equivalence, substitution [80] --
4.3 Prenex form [86] --
4.4 The Adequacy Theorem for K [92] --
4.5 Models [100] --
Mathematical systems [105] --
5.1 Introduction --
5.2 First order systems with equality [106] --
5.3 The theory of groups [112] --
5.4 First order arithmetic [116] --
5.5 Formal set theory [120] --
5.6 Consistency and models [125] --
6 The Gödel Incompleteness Theorem [128] --
6.1 Introduction [130] --
6.2 Expressibility [137] --
6.3 Recursive functions and relations [146] --
6.4 Godel numbers [150] --
6.5 The incompleteness proof [156] --
7 Computability, unsolvability, undecidability [164] --
7.1 Algorithms and computability [183] --
7.2 Turing machines [189] --
7.3 Word problems [199] --
7.4 Undecidability of formal systems [203] --
Appendix Countable and uncountable sets [219] --
Hints and solutions to selected exercises [220] --
References and further reading [224] --
Glossary of symbols --
Index --

MR, 80c:03005

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Share

### ¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha