Numerical methods for unconstrained optimization and nonlinear equations / J. E. Dennis, Jr., Robert B. Schnabel.

Por: Dennis, J. E. (John E.), 1939-Colaborador(es): Schnabel, Robert BSeries Prentice-Hall series in computational mathematicsEditor: Englewood Cliffs, N.J. : Prentice-Hall, c1983Descripción: xiii, 378 p. : il. ; 24 cmISBN: 0136272169Tema(s): Mathematical optimization | Equations -- Numerical solutionsOtra clasificación: 65-01 (49D15 65H05 65K10 90C30) | 90-01 (65-01 65H05 65K05 90C30)
Contenidos:
PREFACE x i
1 INTRODUCTION [2]
1.1 Problems to be considered [2]
1.2 Characteristics of “real-world” problems [5]
1.3 Finite-precision arithmetic and measurement of error [70]
1.4 Exercises [13]
2 NONLINEAR PROBLEMS IN ONE VARIABLE [15]
2.1 What is not possible [15]
2.2 Newton’s method for solving one equation in one unknown [16]
2.3 Convergence of sequences of real numbers [19]
2.4 Convergence of Newton’s method [21]
2.5 Globally convergent methods for solving one equation in one unknown [24]
2.6 Methods when derivatives are unavailable [27]
2.7 Minimization of a function of one variable [32]
2.8 Exercises [36]
3 NUMERICAL LINEAR ALGEBRA BACKGROUND [40]
3.1 Vector and matrix norms and orthogonality [41]
3.2 Solving systems of linear equations—matrix factorizations [47]
3.3 Errors in solving linear systems [57]
3.4 Updating matrix factorizations [55]
3.5 Eigenvalues and positive definiteness [58]
3.6 Linear least squares [60]
3.7 Exercises [66]
|| 4 || MULTIVARIABLE CALCULUS BACKGROUND [69]
4.1 Derivatives and multivariable models [69]
4.2 Multivariable finite-difference derivatives [77]
4.3 Necessary and sufficient conditions for unconstrained minimization [80]
4.4 Exercises [83]
|| 5 || NEWTON’S METHOD
FOR NONLINEAR EQUATIONS
AND UNCONSTRAINED MINIMIZATION [86]
5.1 Newton’s method for systems of nonlinear equations [86]
5.2 Local convergence of Newton’s method [89]
5.3 The Kantorovich and contractive mapping theorems [92]
5.4 Finite-difference derivative methods for systems of nonlinear equations [94]
5.5 Newton’s method for unconstrained minimization [99]
5.6 Finite-difference derivative methods for unconstrained minimization [103]
5.7 Exercises [107]
|| 6 || GLOBALLY CONVERGENT MODIFICATIONS OF NEWTON’S METHOD [111]
6.1 The quasi-Newton framework [112]
6.2 Descent directions [113]
6.3 Line searches [116]
6.3.1 Convergence results for properly chosen steps [120]
6.3.2 Step selection by backtracking [126]
6.4 The model-trust region approach [129]
6.4.1 The locally constrained optimal (“hook”) step [134]
6.4.2 The double dogleg step [139]
6.4.3 Updating the trust region [143]
6.5 Global methods for systems of nonlinear equations [147]
6.6 Exercises [152]
|| 7 ||STOPPING, SCALING, AND TESTING [155]
7.1 Scaling [155]
7.2 Stopping criteria [159]
7.3 Testing [161]
7.4 Exercises [164]
|| 8 || SECANT METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS [168]
8.1 Broyden’s method [169]
8.2 Local convergence analysis of Broyden’s method [174]
8.3 Implementation of quasi-Newton algorithms using Broyden’s update [186]
8.4 Other secant updates for nonlinear equations [189]
8.5 Exercises [190]
|| 9 || SECANT METHODS
FOR UNCONSTRAINED MINIMIZATION [194]
9.1 The symmetric secant update of Powell [195]
9.2 Symmetric positive definite secant updates [198]
9.3 Local convergence of positive definite secant methods [203]
9.4 Implementation of quasi-Newton algorithms using the positive definite secant update [208]
9.5 Another convergence result for the positive definite secant method [210]
9.6 Other secant updates for unconstrained minimization [211]
9.7 Exercises [212]
|| 10 || NONLINEAR LEAST SQUARES [218]
10.1 The nonlinear least-squares problem [218]
10.2 Gauss-Newton-type methods [221]
10.3 Full Newton-type methods [228]
10.4 Other considerations in solving nonlinear least-squares problems [233]
10.5 Exercises [236]
|| 11 || METHODS FOR PROBLEMS WITH SPECIAL STRUCTURE [239]
11.1 The sparse finite-difference Newton method [240]
11.2 Sparse secant methods [242]
11.3 Deriving least-change secant updates [246]
11.4 Analyzing least-change secant methods [251]
11.5 Exercises [256]
A APPENDIX: A MODULAR SYSTEM OF ALGORITHMS
FOR UNCONSTRAINED MINIMIZATION AND NONLINEAR EQUATIONS (by Robert Schnabel) [259]
||B|| APPENDIX: TEST PROBLEMS [361]
REFERENCES [364]
(by Robert Schnabel)
AUTHOR INDEX [371]
SUBJECT INDEX [373]
    Average rating: 0.0 (0 votes)
Item type Home library Call number Materials specified Copy number Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
90 D411 (Browse shelf) Available A-6567

ANÁLISIS NUMÉRICO

MÉTODOS NUMÉRICOS A

Libros Libros Instituto de Matemática, CONICET-UNS
90 D411 (Browse shelf) Ej. 2 Available A-6867

Incluye referencias bibliográficas (p. 364-370) e índices.

PREFACE x i --
1 INTRODUCTION [2] --
1.1 Problems to be considered [2] --
1.2 Characteristics of “real-world” problems [5] --
1.3 Finite-precision arithmetic and measurement of error [70] --
1.4 Exercises [13] --
2 NONLINEAR PROBLEMS IN ONE VARIABLE [15] --
2.1 What is not possible [15] --
2.2 Newton’s method for solving one equation in one unknown [16] --
2.3 Convergence of sequences of real numbers [19] --
2.4 Convergence of Newton’s method [21] --
2.5 Globally convergent methods for solving one equation in one unknown [24] --
2.6 Methods when derivatives are unavailable [27] --
2.7 Minimization of a function of one variable [32] --
2.8 Exercises [36] --
3 NUMERICAL LINEAR ALGEBRA BACKGROUND [40] --
3.1 Vector and matrix norms and orthogonality [41] --
3.2 Solving systems of linear equations—matrix factorizations [47] --
3.3 Errors in solving linear systems [57] --
3.4 Updating matrix factorizations [55] --
3.5 Eigenvalues and positive definiteness [58] --
3.6 Linear least squares [60] --
3.7 Exercises [66] --
|| 4 || MULTIVARIABLE CALCULUS BACKGROUND [69] --
4.1 Derivatives and multivariable models [69] --
4.2 Multivariable finite-difference derivatives [77] --
4.3 Necessary and sufficient conditions for unconstrained minimization [80] --
4.4 Exercises [83] --
|| 5 || NEWTON’S METHOD --
FOR NONLINEAR EQUATIONS --
AND UNCONSTRAINED MINIMIZATION [86] --
5.1 Newton’s method for systems of nonlinear equations [86] --
5.2 Local convergence of Newton’s method [89] --
5.3 The Kantorovich and contractive mapping theorems [92] --
5.4 Finite-difference derivative methods for systems of nonlinear equations [94] --
5.5 Newton’s method for unconstrained minimization [99] --
5.6 Finite-difference derivative methods for unconstrained minimization [103] --
5.7 Exercises [107] --
|| 6 || GLOBALLY CONVERGENT MODIFICATIONS OF NEWTON’S METHOD [111] --
6.1 The quasi-Newton framework [112] --
6.2 Descent directions [113] --
6.3 Line searches [116] --
6.3.1 Convergence results for properly chosen steps [120] --
6.3.2 Step selection by backtracking [126] --
6.4 The model-trust region approach [129] --
6.4.1 The locally constrained optimal (“hook”) step [134] --
6.4.2 The double dogleg step [139] --
6.4.3 Updating the trust region [143] --
6.5 Global methods for systems of nonlinear equations [147] --
6.6 Exercises [152] --
|| 7 ||STOPPING, SCALING, AND TESTING [155] --
7.1 Scaling [155] --
7.2 Stopping criteria [159] --
7.3 Testing [161] --
7.4 Exercises [164] --
|| 8 || SECANT METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS [168] --
8.1 Broyden’s method [169] --
8.2 Local convergence analysis of Broyden’s method [174] --
8.3 Implementation of quasi-Newton algorithms using Broyden’s update [186] --
8.4 Other secant updates for nonlinear equations [189] --
8.5 Exercises [190] --
|| 9 || SECANT METHODS --
FOR UNCONSTRAINED MINIMIZATION [194] --
9.1 The symmetric secant update of Powell [195] --
9.2 Symmetric positive definite secant updates [198] --
9.3 Local convergence of positive definite secant methods [203] --
9.4 Implementation of quasi-Newton algorithms using the positive definite secant update [208] --
9.5 Another convergence result for the positive definite secant method [210] --
9.6 Other secant updates for unconstrained minimization [211] --
9.7 Exercises [212] --
|| 10 || NONLINEAR LEAST SQUARES [218] --
10.1 The nonlinear least-squares problem [218] --
10.2 Gauss-Newton-type methods [221] --
10.3 Full Newton-type methods [228] --
10.4 Other considerations in solving nonlinear least-squares problems [233] --
10.5 Exercises [236] --
|| 11 || METHODS FOR PROBLEMS WITH SPECIAL STRUCTURE [239] --
11.1 The sparse finite-difference Newton method [240] --
11.2 Sparse secant methods [242] --
11.3 Deriving least-change secant updates [246] --
11.4 Analyzing least-change secant methods [251] --
11.5 Exercises [256] --
A APPENDIX: A MODULAR SYSTEM OF ALGORITHMS --
FOR UNCONSTRAINED MINIMIZATION AND NONLINEAR EQUATIONS (by Robert Schnabel) [259] --
||B|| APPENDIX: TEST PROBLEMS [361] --
REFERENCES [364] --
(by Robert Schnabel) --
AUTHOR INDEX [371] --
SUBJECT INDEX [373] --

MR, 85j:65001

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha