Numerical solution of boundary value problems for ordinary differential equations / Uri M. Ascher, Robert M. M. Mattheij, Robert D. Russell.

Por: Ascher, U. M. (Uri M.), 1946-Colaborador(es): Mattheij, Robert M. M | Russell, R. D. (Robert D.), 1945-Series Prentice Hall series in computational mathematicsEditor: Englewood Cliffs, N.J. : Prentice Hall, c1988Descripción: xxi, 595 p. : il. ; 25 cmISBN: 0136272665Otra clasificación: 65-01 (65L05 65L10 65L12 65L50 65L70 34-01)
Contenidos:
1 INTRODUCTION [1]
1.1 Boundary Value Problems for Ordinary Differential
Equations [1]
1.1.1 Model problems [1]
1.1.2 General forms for the differential equations [3]
1.1.3 General forms for the boundary conditions [4]
1.2 Boundary Value Problems in Applications [7]
2 REVIEW OF NUMERICAL ANALYSIS AND MATHEMATICAL BACKGROUND [28]
2.1 Errors in Computation [28]
2.2 Numerical Linear Algebra [32]
Eigenvalues, transformations, factorizations, projections [32]
Norms, angles, and condition numbers 36 Gaussian elimination, LU-decomposition [39]
Householder transformations: QU-decomposition [43]
Least squares solution of overdetermined systems [45]
The QR algorithm for eigenvalues [45]
Error analysis [46]
2.3 Nonlinear Equations [48]
Newton’s method [48]
Fixed-point iteration and two basic theorems [49]
Quasi-Newton methods [51]
Quasilinearization [52]
Polynomial Interpolation [55]
2.4.1 Forms for interpolation polynomials [55]
2.4.2 Osculatory interpolation [58]
2.5 Piecewise Polynomials, or Splines [59]
2.5.1 Local representations [59]
2.5.2 B-splines [61]
2.5.3 Spline interpolation [62]
2.6 Numerical Quadrature [63]
2.6.1 Basic rules [63]
2.6.2 Composite formulas [66]
2.7 Initial Value Ordinary Differential Equations [67]
Numerical methods [68]
Consistency, stability and convergence [71]
Stiff problems [73]
Error control and step selection [74]
2.8 Differential Operators and Their Discretizations [77]
2.8.1 Norms of functions, spaces, and operators [77]
2.8.2 Roundoff errors and truncation errors [80]
3 THEORY OF ORDINARY DIFFERENTIAL EQUATIONS [84]
3.1 Existence and Uniqueness Results [85]
3.1.1 Results for boundary value problems [85]
3.1.2 Results for initial value problems [87]
3.2 Green’s Functions [94]
3.2.1 A first-order system [94]
3.2.2 A higher-order ODE [96]
3.3 Stability of Initial Value Problems [99]
3.3.1 Stability and fundamental solutions [100]
3.3.2 The constant coefficient case [102]
3.3.3 The general linear case [104]
3.3.4 The nonlinear case [109]
3.4 Conditioning of Boundary Value Problems [110]
3.4.1 Linear problems and conditioning constants [111]
3.4.2 Dichotomy [115]
3.4.3 Well-conditioning and dichotomy [121]
Exercises [127]
4 INITIAL VALUE METHODS [132]
4.1 Introduction: Shooting [132]
4.1.1 Shooting for a linear second-order problem [133]
4.1.2 Shooting for a nonlinear second-order problem [134]
4.1.3 Shooting—general application, limitations, extensions [134]
4.2 Superposition and Reduced Superposition [135]
4.2.1 Superposition [735]
4.2.2 Numerical accuracy [137]
4.2.3 Numerical stability [140]
4.2.4 Reduced superposition [143]
4.3 Multiple Shooting for Linear Problems [145]
4.3.1 The method [146]
4.3.2 Stability [149]
4.3.3 Practical considerations [757]
4.3.4 Compactification [753]
4.4 Marching Techniques for Multiple Shooting [155]
4.4.1 Reorthogonalization [756]
4.4.2 Decoupling [757]
4.4.3 Stabilized march [.767]
4.5 The Riccati Method [164]
4.5.1 Invariant imbedding [164]
4.5.2 Riccati transformations for general linear BVPs [766]
4.5.3 Method properties [168]
4.6 Nonlinear Problems [170]
4.6.1 Shooting for nonlinear problems [170]
4.6.2 Difficulties with single shooting [174]
4.6.3 Multiple shooting for nonlinear problems [175]
Exercises [180]
5 FINITE DIFFERENCE METHODS [185]
5.1 Introduction [185]
5.1.1 A simple scheme for a second-order problem [187]
5.1.2 Simple one-step schemes for linear systems [190]
5.1.3 Simple schemes for nonlinear problems [194]
5.2 Consistency, Stability, and Convergence [198]
5.2.1 Linear problems [198]
5.2.2 Nonlinear problems [203]
5.3 Higher-Order One-Step Schemes [208]
5.3.1 Implicit Runge-Kutta schemes [210]
5.3.2 A subclass of Runge-Kutta schemes [213]
5.3.3 On the implementation of Runge-Kutta schemes [217]
5.4 Collocation Theory [218]
5.4.1 Linear problems [279]
5.4.2 Nonlinear problems [222]
5.5 Acceleration Techniques [226]
5.5.1 Error expansion [228]
5.5.2 Extrapolation [230]
5.5.3 Deferred corrections [234]
5.5.4 More deferred corrections [238]
5.6 Higher-Order ODEs [244]
5.6.1 More on a simple second-order scheme [245]
5.6.2 Collocation [247]
5.6.3 Collocation implementation using spline bases [259]
5.6.4 Conditioning of collocation matrices [262]
5.7 Finite Element Methods [266]
5.7.1 The Ritz method [267]
5.7.2 Other finite element methods [271]
Exercises [272]
6 DECOUPLING [275]
6.1 Decomposition of Vectors [277]
6.2 Decoupling of the ODE [279]
6.2.1 Consistent fundamental solution [260]
6.2.2 The basic continuous decoupling algorithm [284]
6.3 Decoupling of One-Step Recursions [288]
6.3.1 Consistent fundamental solutions [290]
6.3.2 The basic discrete decoupling algorithm and additional considerations [291]
6.4 Practical Aspects of Consistency [293]
6.4.1 Consistency for separated BC [293]
6.4.2 Consistency for partially separated BC [295]
6.4.3 Consistency for general BC [296]
6.5 Closure and its Implications Exercises 299 [297]
7 SOLVING LINEAR EQUATIONS [303]
7.1 General Staircase Matrices and Condensation [306]
7.2 Algorithms for the Separated BC Case [308]
7.2.1 Gaussian elimination with partial pivoting [308]
7.2.2 Alternate row and column elimination [310]
7.2.3 Block tridiagonal elimination [313]
7.2.4 Stable compactification [316]
7.3 Stability for Block Methods [318]
7.4 Decomposition in the Nonseparated BC Case [319]
7.4.1 The LU-decomposition [320]
7A.2 A general decoupling algorithm [321]
7.5 Solution in More General Cases [322]
7.5.1 BVPs with parameters [322]
7.5.2 Multipoint BC [323]
Exercises [324]
8 SOLVING NONLINEAR EQUATIONS [327]
8.1 Improving the Local Convergence of Newton’s Method [329]
8.1.1 Damped Newton [329]
8.1.2 Altering the Newton direction [338]
8.2 Reducing the Cost of the Newton Iteration [341]
8.2.1 Modified Newton [341]
8.2.2 Rank-1 updates [343]
8.3 Finding a Good Initial Guess [343]
8.3.1 Continuation [344]
8.3.2 Imbedding in a time-dependent problem [350]
8.4 Further Remarks on Discrete Nonlinear BVPS [353]
Exercises [355]
9 MESH SELECTION [358]
9.1 Introduction [359]
9.1.1 Error equidistribution and monitoring [362]
9.2 Direct Methods [364]
9.2.1 Equidistributing local truncation error [365]
9.3 A Mesh Strategy for Collocation [367]
9.3.1 A practical mesh selection algorithm [367]
9.3.2 Numerical examples [371]
9.4 Transformation Methods [373]
9.4.1 Explicit method [373]
9.4.2 Implicit method [375]
9.5 General Considerations [380]
9.5.1 Some practical considerations [380]
9.5.2 Coordinating mesh selection and nonlinear iteration [381]
9.5.3 Other approaches [383]
Exercises [384]
10 SINGULAR PERTURBATIONS [386]
10.1 Analytical Approaches [389]
10.1.1 A linear second-order ODE [390]
10.1.2 A nonlinear second-order ODE [395]
10.1.3 Linear first-order systems [397]
10.1.4 Nonlinear first-order systems [411]
10.2 Numerical Approaches [414]
10.2.1 Theoretical multiple shooting [415]
10.2.2 Stability and global error analysis, I [419]
10.2.3 Stability and global error analysis, II [422]
10.2.4 The discretization mesh as a stretching transformation [428]
10.3 Difference Methods [432]
10.3.1 One-sided schemes [432]
10.3.2 Symmetric schemes [440]
10.3.3 Exponential fitting [454]
10.4 Initial Value Methods [457]
10.4.1 Sequential shooting [457]
10.4.2 The Riccati method [460]
Exercises [467]
11 SPECIAL TOPICS [469]
11.1 Reformulation of Problems in “Standard” Form [469]
11.1.1 Higher-order equations, parameters, nonseparated BC, multipoint BC [470]
11.1.2 Conditions at special points [471]
11.1.3 Integral relations [473]
11.2 Generalized ODEs and Differential Algebraic Equations [474]
11.3 Eigenvalue Problems [478]
11.3.1 Sturm-Liouville problems [478]
11.3.2 Eigenvalues of first-order systems [482]
11.4 BVPs with Singularities; Infinite Intervals [483]
11.4.1 Singularities of the first kind [484]
11.4.2 Infinite interval problems [486]
11.5 Path Following, Singular Points and Bifurcation [490]
11.5.1 Branching and stability [493]
11.5.2 Numerical techniques [496]
11.6 Highly Oscillatory Solutions [500]
11.7 Functional Differential Equations [505]
11.8 Method of Lines for PDEs [508]
11.9 Multipoint Problems [512]
11.10 On Code Design and Comparison [515]
APPENDIX A: A MULTIPLE SHOOTING CODE [517]
APPENDIX B: A COLLOCATION CODE [526]
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 65 As813 (Browse shelf) Available A-8034

ANÁLISIS NUMÉRICO

MÉTODOS NUMÉRICOS B

MÉTODOS NUMÉRICOS PARA ECUACIONES DIFERENCIALES


Incluye referencias bibliográficas (p. 566-585) e índice.

1 INTRODUCTION [1] --
1.1 Boundary Value Problems for Ordinary Differential --
Equations [1] --
1.1.1 Model problems [1] --
1.1.2 General forms for the differential equations [3] --
1.1.3 General forms for the boundary conditions [4] --
1.2 Boundary Value Problems in Applications [7] --
2 REVIEW OF NUMERICAL ANALYSIS AND MATHEMATICAL BACKGROUND [28] --
2.1 Errors in Computation [28] --
2.2 Numerical Linear Algebra [32] --
Eigenvalues, transformations, factorizations, projections [32] --
Norms, angles, and condition numbers 36 Gaussian elimination, LU-decomposition [39] --
Householder transformations: QU-decomposition [43] --
Least squares solution of overdetermined systems [45] --
The QR algorithm for eigenvalues [45] --
Error analysis [46] --
2.3 Nonlinear Equations [48] --
Newton’s method [48] --
Fixed-point iteration and two basic theorems [49] --
Quasi-Newton methods [51] --
Quasilinearization [52] --
Polynomial Interpolation [55] --
2.4.1 Forms for interpolation polynomials [55] --
2.4.2 Osculatory interpolation [58] --
2.5 Piecewise Polynomials, or Splines [59] --
2.5.1 Local representations [59] --
2.5.2 B-splines [61] --
2.5.3 Spline interpolation [62] --
2.6 Numerical Quadrature [63] --
2.6.1 Basic rules [63] --
2.6.2 Composite formulas [66] --
2.7 Initial Value Ordinary Differential Equations [67] --
Numerical methods [68] --
Consistency, stability and convergence [71] --
Stiff problems [73] --
Error control and step selection [74] --
2.8 Differential Operators and Their Discretizations [77] --
2.8.1 Norms of functions, spaces, and operators [77] --
2.8.2 Roundoff errors and truncation errors [80] --
3 THEORY OF ORDINARY DIFFERENTIAL EQUATIONS [84] --
3.1 Existence and Uniqueness Results [85] --
3.1.1 Results for boundary value problems [85] --
3.1.2 Results for initial value problems [87] --
3.2 Green’s Functions [94] --
3.2.1 A first-order system [94] --
3.2.2 A higher-order ODE [96] --
3.3 Stability of Initial Value Problems [99] --
3.3.1 Stability and fundamental solutions [100] --
3.3.2 The constant coefficient case [102] --
3.3.3 The general linear case [104] --
3.3.4 The nonlinear case [109] --
3.4 Conditioning of Boundary Value Problems [110] --
3.4.1 Linear problems and conditioning constants [111] --
3.4.2 Dichotomy [115] --
3.4.3 Well-conditioning and dichotomy [121] --
Exercises [127] --
4 INITIAL VALUE METHODS [132] --
4.1 Introduction: Shooting [132] --
4.1.1 Shooting for a linear second-order problem [133] --
4.1.2 Shooting for a nonlinear second-order problem [134] --
4.1.3 Shooting—general application, limitations, extensions [134] --
4.2 Superposition and Reduced Superposition [135] --
4.2.1 Superposition [735] --
4.2.2 Numerical accuracy [137] --
4.2.3 Numerical stability [140] --
4.2.4 Reduced superposition [143] --
4.3 Multiple Shooting for Linear Problems [145] --
4.3.1 The method [146] --
4.3.2 Stability [149] --
4.3.3 Practical considerations [757] --
4.3.4 Compactification [753] --
4.4 Marching Techniques for Multiple Shooting [155] --
4.4.1 Reorthogonalization [756] --
4.4.2 Decoupling [757] --
4.4.3 Stabilized march [.767] --
4.5 The Riccati Method [164] --
4.5.1 Invariant imbedding [164] --
4.5.2 Riccati transformations for general linear BVPs [766] --
4.5.3 Method properties [168] --
4.6 Nonlinear Problems [170] --
4.6.1 Shooting for nonlinear problems [170] --
4.6.2 Difficulties with single shooting [174] --
4.6.3 Multiple shooting for nonlinear problems [175] --
Exercises [180] --
5 FINITE DIFFERENCE METHODS [185] --
5.1 Introduction [185] --
5.1.1 A simple scheme for a second-order problem [187] --
5.1.2 Simple one-step schemes for linear systems [190] --
5.1.3 Simple schemes for nonlinear problems [194] --
5.2 Consistency, Stability, and Convergence [198] --
5.2.1 Linear problems [198] --
5.2.2 Nonlinear problems [203] --
5.3 Higher-Order One-Step Schemes [208] --
5.3.1 Implicit Runge-Kutta schemes [210] --
5.3.2 A subclass of Runge-Kutta schemes [213] --
5.3.3 On the implementation of Runge-Kutta schemes [217] --
5.4 Collocation Theory [218] --
5.4.1 Linear problems [279] --
5.4.2 Nonlinear problems [222] --
5.5 Acceleration Techniques [226] --
5.5.1 Error expansion [228] --
5.5.2 Extrapolation [230] --
5.5.3 Deferred corrections [234] --
5.5.4 More deferred corrections [238] --
5.6 Higher-Order ODEs [244] --
5.6.1 More on a simple second-order scheme [245] --
5.6.2 Collocation [247] --
5.6.3 Collocation implementation using spline bases [259] --
5.6.4 Conditioning of collocation matrices [262] --
5.7 Finite Element Methods [266] --
5.7.1 The Ritz method [267] --
5.7.2 Other finite element methods [271] --
Exercises [272] --
6 DECOUPLING [275] --
6.1 Decomposition of Vectors [277] --
6.2 Decoupling of the ODE [279] --
6.2.1 Consistent fundamental solution [260] --
6.2.2 The basic continuous decoupling algorithm [284] --
6.3 Decoupling of One-Step Recursions [288] --
6.3.1 Consistent fundamental solutions [290] --
6.3.2 The basic discrete decoupling algorithm and additional considerations [291] --
6.4 Practical Aspects of Consistency [293] --
6.4.1 Consistency for separated BC [293] --
6.4.2 Consistency for partially separated BC [295] --
6.4.3 Consistency for general BC [296] --
6.5 Closure and its Implications Exercises 299 [297] --
7 SOLVING LINEAR EQUATIONS [303] --
7.1 General Staircase Matrices and Condensation [306] --
7.2 Algorithms for the Separated BC Case [308] --
7.2.1 Gaussian elimination with partial pivoting [308] --
7.2.2 Alternate row and column elimination [310] --
7.2.3 Block tridiagonal elimination [313] --
7.2.4 Stable compactification [316] --
7.3 Stability for Block Methods [318] --
7.4 Decomposition in the Nonseparated BC Case [319] --
7.4.1 The LU-decomposition [320] --
7A.2 A general decoupling algorithm [321] --
7.5 Solution in More General Cases [322] --
7.5.1 BVPs with parameters [322] --
7.5.2 Multipoint BC [323] --
Exercises [324] --
8 SOLVING NONLINEAR EQUATIONS [327] --
8.1 Improving the Local Convergence of Newton’s Method [329] --
8.1.1 Damped Newton [329] --
8.1.2 Altering the Newton direction [338] --
8.2 Reducing the Cost of the Newton Iteration [341] --
8.2.1 Modified Newton [341] --
8.2.2 Rank-1 updates [343] --
8.3 Finding a Good Initial Guess [343] --
8.3.1 Continuation [344] --
8.3.2 Imbedding in a time-dependent problem [350] --
8.4 Further Remarks on Discrete Nonlinear BVPS [353] --
Exercises [355] --
9 MESH SELECTION [358] --
9.1 Introduction [359] --
9.1.1 Error equidistribution and monitoring [362] --
9.2 Direct Methods [364] --
9.2.1 Equidistributing local truncation error [365] --
9.3 A Mesh Strategy for Collocation [367] --
9.3.1 A practical mesh selection algorithm [367] --
9.3.2 Numerical examples [371] --
9.4 Transformation Methods [373] --
9.4.1 Explicit method [373] --
9.4.2 Implicit method [375] --
9.5 General Considerations [380] --
9.5.1 Some practical considerations [380] --
9.5.2 Coordinating mesh selection and nonlinear iteration [381] --
9.5.3 Other approaches [383] --
Exercises [384] --
10 SINGULAR PERTURBATIONS [386] --
10.1 Analytical Approaches [389] --
10.1.1 A linear second-order ODE [390] --
10.1.2 A nonlinear second-order ODE [395] --
10.1.3 Linear first-order systems [397] --
10.1.4 Nonlinear first-order systems [411] --
10.2 Numerical Approaches [414] --
10.2.1 Theoretical multiple shooting [415] --
10.2.2 Stability and global error analysis, I [419] --
10.2.3 Stability and global error analysis, II [422] --
10.2.4 The discretization mesh as a stretching transformation [428] --
10.3 Difference Methods [432] --
10.3.1 One-sided schemes [432] --
10.3.2 Symmetric schemes [440] --
10.3.3 Exponential fitting [454] --
10.4 Initial Value Methods [457] --
10.4.1 Sequential shooting [457] --
10.4.2 The Riccati method [460] --
Exercises [467] --
11 SPECIAL TOPICS [469] --
11.1 Reformulation of Problems in “Standard” Form [469] --
11.1.1 Higher-order equations, parameters, nonseparated BC, multipoint BC [470] --
11.1.2 Conditions at special points [471] --
11.1.3 Integral relations [473] --
11.2 Generalized ODEs and Differential Algebraic Equations [474] --
11.3 Eigenvalue Problems [478] --
11.3.1 Sturm-Liouville problems [478] --
11.3.2 Eigenvalues of first-order systems [482] --
11.4 BVPs with Singularities; Infinite Intervals [483] --
11.4.1 Singularities of the first kind [484] --
11.4.2 Infinite interval problems [486] --
11.5 Path Following, Singular Points and Bifurcation [490] --
11.5.1 Branching and stability [493] --
11.5.2 Numerical techniques [496] --
11.6 Highly Oscillatory Solutions [500] --
11.7 Functional Differential Equations [505] --
11.8 Method of Lines for PDEs [508] --
11.9 Multipoint Problems [512] --
11.10 On Code Design and Comparison [515] --
APPENDIX A: A MULTIPLE SHOOTING CODE [517] --
APPENDIX B: A COLLOCATION CODE [526] --

MR, 90h:65120

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha