A comprehensive introduction to differential geometry / Michael Spivak.

Por: Spivak, MichaelEditor: Boston : Publish or Perish, 1970-75Descripción: 5 v. : il. ; 28 cmISBN: 0914098004 (v. 2)Otro título: Differential geometryOtra clasificación: 53-01
Contenidos:
CONTENTS OF VOLUME I
CHAPTER 1. MANIFOLDS (1-1 to 1-32)
Elementary properties of manifolds 1-1
Examples of manifolds 1-8
PROBLEMS 1-24
CHAPTER 2. DIFFERENTIABLE STRUCTURES (2-1 to 2-47)
C∞ structures 2-1
C∞ functions 2-6
Partial derivatives 2-11
Critical points 2-17
Immersion theorems 2-20
Partitions of unity 2-31
PROBLEMS [33] 2-36
CHAPTER 3. THE TANGENT BUNDLE (3-1 to 3-58 )
The tangent space of Rn 3-1
The tangent space of an imbedded manifold 3-6
Vector bundles 3-11
The tangent bundle of a manifold 3-16
Equivalence classes of curves, and derivations 3-20
Uniqueness of the tangent bundle 3-23
Vector fields 3-33
Orientation 3-36
PROBLEMS [1,2,16,23,24,26,30,31] 3-43
CHAPTER 4. TENSORS (4-1 to 4-39)
The dual bundle 4-1
The differential of a map 4-4
CONTENTS OF VOLUME I
CHAPTER 4. TENSORS (4-1 to 4-39) - Cont.
Classical versus modern terminology 4-6
Multilinear functions 4-12
Covariant and contravariant tensors 4-14
Mixed tensors, and contraction 4-20
PROBLEMS [5] 4-29
CHAPTER 5- VECTOR FIELDS AND DIFFERENTIAL EQUATIONS (5-1 to 5-61)
Integral curves 5-1
Existence and uniqueness theorems 5-7
The local flow 5-15
One-parameter groups of diffeomorphisms 5-21
Lie derivatives 5-24
Brackets 5-29
Addendum on Differential Equations 5-43
PROBLEMS [5,6,15,17] 5-47
CHAPTER 6. INTEGRAL MANIFOLDS (6-1 to 6-31)
Prologue; classical integrability theorems 6-1
Local Theory; Frobenius Integrability Theorem 6-15
Global Theory 6-21
PROBLEMS [5,7,8] 6-26
CHAPTER 7. DIFFERENTIAL FORMS (7-1 to 7-54)
Alternating functions 7-1
The wedge product 7-4
Forms 7-10
Differential of a form 7-14
Frobenius integrability theorem (differential form version) 7-22
Closed and exact forms 7-25
The Poincaré Lemma 7-35
PROBLEMS [12,14,15,19,23,26] 7-38
CHAPTER 8. INTEGRATION (8-1 to 8-82)
Classical line and surface integrals 8-1
Integrals over singular k-cubes 8-9
The boundary of a chain 8-13
Stokes * Theorem 8-18
CHAPTER 8. INTEGRATION (8-1 to 8-82) - Cont.
Integrals over manifolds 8-22
Volume elements 8-25
Stokes' Theorem 8-29
De Rham cohomology 8-32
PROBLEMS [23,24,25,26,31] 8-61
CHAPTER 9. RIEMANNIAN METRICS (9-1 to 9-89)
Inner products 9-1
Riemannian metrics 9-12
Length of curves 9-18
The calculus of variations 9-24
The First Variation Formula and geodesics 9-38
The exponential map 9-46
Geodesic completeness 9-55
Addendum on Tubular Neighborhoods 9-59
PROBLEMS [23,27,28,29,32, 41] 9-63
CHAPTER 10. LIE GROUPS (10-1 to 10-68)
Lie groups 10-1
Left invariant vector fields 10-6
Lie algebras 10-8
Subgroups and subalgebras 10-13
Homomorphisms 10-14
One-parameter subgroups 10-20
The exponential map 10-23
Closed subgroups 10-32
Left invariant forms 10-35
Bi-invariant metrics 10-46
The equations of structure 10-50
PROBLEMS [7,15,19,24] 10-53
CHAPTER 11. EXCURSION I: IN THE REALM OF ALGEBRAIC TOPOLOGY (11-1 to 11-52)
Complexes and exact sequences 11-1
The Mayer-Vietoris Sequence 11-8
Triangulations 11-10
The Euler Characteristic 11-12
Mayer-Vietoris sequence for compact supports 11-16
The exact sequence of a pair 11-19
Poincare Duality 11-30
The Thom class 11-31
CONTENTS OF VOLUME II
CHAPTER 1. CURVES IN THE PLANE AND IN SPACE (1-1 to 1-61)
Curvature of plane curves 1-1
Convex curves 1-16
Curvature and torsion of space curves 1-30
The Serret-Frenet formulas 1-43
The natural form on a Lie group 1-46
Classification of plane curves under the group of special
and proper affine motions 1-50
Classification of curves in Rn under the group of proper
Euclidean motions 1-58
CHAPTER. 2. WHAT THEY KNEW ABOUT SURFACES BEFORE GAUSS (2-1 to 2-9)
Euler’s Theorem 2-1
Meusnier’s Theorem 2-6
CHAPTER 3A. HOW TO READ GAUSS (3A-I to 3A-12)
CHAPTER 3B. GAUSS’ THEORY OF SURFACES (3B-1 to 3B-b6)
The Gauss map 3B-1
Gaussian curvature 3B-4
The Weingarten map 3B-12
The first and second fundamental forms 3B-14
The Theorems Egreguim 3B-27
Geodesics on a surface 3B-30
The metric in geodesic polar coordinates 3B-32
The integral of the curvature over a geodesic triangle 3B-38
Addendum. The Formula of Bertrand and Puiseux; Diquet’s formula 3B-43
CHAPTER 4A. AN INAUGURAL LECTURE (4A-1 to UA-20)
Introduction 4a-1
"On the Hypotheses which lie at the Foundations of Geometry" 4A-4
CHAPTER 4B. WHAT DID RIEMANN SAY? (4B-1 to 4B-38)
The form of the metric in Riemannian normal coordinates 4B-1
Addendum. Finsler Metrics 4B-27
CHAPTER 4C. A PRIZE ESSAY (4C-1 to 4C-5)
CHAPTER 4D. THE BIRTH OF THE RIEMANN CURVATURE TENSOR (4D-1 to 4D-26)
Necessary conditions for a metric to be flat 4D-1
The Riemann curvature tensor 4D-8
Sectional curvature 4D-15
The Test Case; first version 4D-19
Addendum. Riemann’s Invariant Definition of the Curvature Tensor 4D-24
CHAPTER 5. THE ABSOLUTE DIFFERENTIAL CALCULUS (THE RICCI CALCULUS); OR, THE DEBAUCH OF INDICES (5-1 to 5-24)
Covariant derivatives 5-1
Ricci’s Lemma 5-6
Ricci’s Identities 5-8
The curvature tensor 5-9
The Test Case; second version 5-12
Classical connections 5-17
The torsion tensor 5-18
Geodesics 5-19
Bianchi’s identities 5-21
CHAPTER 6. THE V OPERATOR (6-1 to 6-42)
Koszul connections 6-1
Covariant derivatives 6-3
Parallel translation 6-10
The torsion tensor 6-14
The Levi-Civita connection 6-17
The curvature tensor 6-18
The Test Case; third version 6-21
HAPTER 6. The v OPERATOR (6-1 to 6-42) - Cont.
Bianchi’s identities 6-25
Geodesics 6-28
The First Variation Formula 6-29
Addendum 1. Connections with the same Geodesics 6-32
Addendum 2. Riemann’s Invariant Definition of the Curvature Tensor 6-40
CHAPTER 7. THE REPERE MOBILE (THE MOVING FRAME) (7-1 to 7-58)
Moving frames 7-1
The structural equations of Eculidean space 7-4
The structural equations of a Riemannian manifold 7-12
The Test Case; fourth version 7-14
Adapted frames 7-17
The structural equations in polar coordinates 7-20
The Test Case; fifth version 7-22
The Test Case; sixth version - 7-23
’’The curvature determines the metric” 7-26
The 2-dimensional case 7-29
Cartan connections 7-32
Covariant derivatives and the torsion and curvature tensors 7-37
Bianchi’s identities ' 7-41
Addendum 1. Manifolds of Constant Curvature 7-44 Schur’s Theorem 7-46
The form of the metric in normal coordinates 7-49
Isothermic coordinates 7-51
Addendum 2. E. Cartan’s Treatment of Normal Coordinates 7-56
CHAPTER 8. CONNECTIONS IN PRINCIPAL BUNDLES (8-1 to 8-62)
Principal bundles 8-1
Lie groups acting on manifolds 8-6
A new definition of Cartan connections 8-10
Ehresmann connections 8-16
Lifts 8-19
Parallel translation and covariant derivatives 8-22
The covariant differential and the curvature form 8-29
The dual form and the torsion form 8-30
The structural equations 8-33
The torsion and curvature tensors 8-36
The Test Case; seventh version 8-41
Bianchi’s identities 8-42
Summary 8-44
Addendum 1. The Tangent Bundle of F(M) 8-52
Addendum 2. Complete Connections 8-54
Addendum 3, Connections in Vector Bundles 8-56
Addendum 4. Flat Connections, and an Apology 8-61
    Average rating: 0.0 (0 votes)
Item type Home library Shelving location Call number Materials specified Status Date due Barcode Course reserves
Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 53 Sp761 (Browse shelf) Vol. I Available A-3985

GEOMETRÍA II

Libros Libros Instituto de Matemática, CONICET-UNS
Libros ordenados por tema 53 Sp761 (Browse shelf) Vol. II Available A-3986

La biblioteca posee los vols. 1 y 2. Para los vols. 3, 4, 5 consulte la 2.ª ed. AR-BbIMB.

CONTENTS OF VOLUME I --
CHAPTER 1. MANIFOLDS (1-1 to 1-32) --
Elementary properties of manifolds 1-1 --
Examples of manifolds 1-8 --
PROBLEMS 1-24 --
CHAPTER 2. DIFFERENTIABLE STRUCTURES (2-1 to 2-47) --
C∞ structures 2-1 --
C∞ functions 2-6 --
Partial derivatives 2-11 --
Critical points 2-17 --
Immersion theorems 2-20 --
Partitions of unity 2-31 --
PROBLEMS [33] 2-36 --
CHAPTER 3. THE TANGENT BUNDLE (3-1 to 3-58 ) --
The tangent space of Rn 3-1 --
The tangent space of an imbedded manifold 3-6 --
Vector bundles 3-11 --
The tangent bundle of a manifold 3-16 --
Equivalence classes of curves, and derivations 3-20 --
Uniqueness of the tangent bundle 3-23 --
Vector fields 3-33 --
Orientation 3-36 --
PROBLEMS [1,2,16,23,24,26,30,31] 3-43 --
CHAPTER 4. TENSORS (4-1 to 4-39) --
The dual bundle 4-1 --
The differential of a map 4-4 --
CONTENTS OF VOLUME I --
CHAPTER 4. TENSORS (4-1 to 4-39) - Cont. --
Classical versus modern terminology 4-6 --
Multilinear functions 4-12 --
Covariant and contravariant tensors 4-14 --
Mixed tensors, and contraction 4-20 --
PROBLEMS [5] 4-29 --
CHAPTER 5- VECTOR FIELDS AND DIFFERENTIAL EQUATIONS (5-1 to 5-61) --
Integral curves 5-1 --
Existence and uniqueness theorems 5-7 --
The local flow 5-15 --
One-parameter groups of diffeomorphisms 5-21 --
Lie derivatives 5-24 --
Brackets 5-29 --
Addendum on Differential Equations 5-43 --
PROBLEMS [5,6,15,17] 5-47 --
CHAPTER 6. INTEGRAL MANIFOLDS (6-1 to 6-31) --
Prologue; classical integrability theorems 6-1 --
Local Theory; Frobenius Integrability Theorem 6-15 --
Global Theory 6-21 --
PROBLEMS [5,7,8] 6-26 --
CHAPTER 7. DIFFERENTIAL FORMS (7-1 to 7-54) --
Alternating functions 7-1 --
The wedge product 7-4 --
Forms 7-10 --
Differential of a form 7-14 --
Frobenius integrability theorem (differential form version) 7-22 --
Closed and exact forms 7-25 --
The Poincaré Lemma 7-35 --
PROBLEMS [12,14,15,19,23,26] 7-38 --
CHAPTER 8. INTEGRATION (8-1 to 8-82) --
Classical line and surface integrals 8-1 --
Integrals over singular k-cubes 8-9 --
The boundary of a chain 8-13 --
Stokes * Theorem 8-18 --
CHAPTER 8. INTEGRATION (8-1 to 8-82) - Cont. --
Integrals over manifolds 8-22 --
Volume elements 8-25 --
Stokes' Theorem 8-29 --
De Rham cohomology 8-32 --
PROBLEMS [23,24,25,26,31] 8-61 --
CHAPTER 9. RIEMANNIAN METRICS (9-1 to 9-89) --
Inner products 9-1 --
Riemannian metrics 9-12 --
Length of curves 9-18 --
The calculus of variations 9-24 --
The First Variation Formula and geodesics 9-38 --
The exponential map 9-46 --
Geodesic completeness 9-55 --
Addendum on Tubular Neighborhoods 9-59 --
PROBLEMS [23,27,28,29,32, 41] 9-63 --
CHAPTER 10. LIE GROUPS (10-1 to 10-68) --
Lie groups 10-1 --
Left invariant vector fields 10-6 --
Lie algebras 10-8 --
Subgroups and subalgebras 10-13 --
Homomorphisms 10-14 --
One-parameter subgroups 10-20 --
The exponential map 10-23 --
Closed subgroups 10-32 --
Left invariant forms 10-35 --
Bi-invariant metrics 10-46 --
The equations of structure 10-50 --
PROBLEMS [7,15,19,24] 10-53 --
CHAPTER 11. EXCURSION I: IN THE REALM OF ALGEBRAIC TOPOLOGY (11-1 to 11-52) --
Complexes and exact sequences 11-1 --
The Mayer-Vietoris Sequence 11-8 --
Triangulations 11-10 --
The Euler Characteristic 11-12 --
Mayer-Vietoris sequence for compact supports 11-16 --
The exact sequence of a pair 11-19 --
Poincare Duality 11-30 --
The Thom class 11-31 --

CONTENTS OF VOLUME II --
CHAPTER 1. CURVES IN THE PLANE AND IN SPACE (1-1 to 1-61) --
Curvature of plane curves 1-1 --
Convex curves 1-16 --
Curvature and torsion of space curves 1-30 --
The Serret-Frenet formulas 1-43 --
The natural form on a Lie group 1-46 --
Classification of plane curves under the group of special --
and proper affine motions 1-50 --
Classification of curves in Rn under the group of proper --
Euclidean motions 1-58 --
CHAPTER. 2. WHAT THEY KNEW ABOUT SURFACES BEFORE GAUSS (2-1 to 2-9) --
Euler’s Theorem 2-1 --
Meusnier’s Theorem 2-6 --
CHAPTER 3A. HOW TO READ GAUSS (3A-I to 3A-12) --
CHAPTER 3B. GAUSS’ THEORY OF SURFACES (3B-1 to 3B-b6) --
The Gauss map 3B-1 --
Gaussian curvature 3B-4 --
The Weingarten map 3B-12 --
The first and second fundamental forms 3B-14 --
The Theorems Egreguim 3B-27 --
Geodesics on a surface 3B-30 --
The metric in geodesic polar coordinates 3B-32 --
The integral of the curvature over a geodesic triangle 3B-38 --
Addendum. The Formula of Bertrand and Puiseux; Diquet’s formula 3B-43 --
CHAPTER 4A. AN INAUGURAL LECTURE (4A-1 to UA-20) --
Introduction 4a-1 --
"On the Hypotheses which lie at the Foundations of Geometry" 4A-4 --
CHAPTER 4B. WHAT DID RIEMANN SAY? (4B-1 to 4B-38) --
The form of the metric in Riemannian normal coordinates 4B-1 --
Addendum. Finsler Metrics 4B-27 --
CHAPTER 4C. A PRIZE ESSAY (4C-1 to 4C-5) --
CHAPTER 4D. THE BIRTH OF THE RIEMANN CURVATURE TENSOR (4D-1 to 4D-26) --
Necessary conditions for a metric to be flat 4D-1 --
The Riemann curvature tensor 4D-8 --
Sectional curvature 4D-15 --
The Test Case; first version 4D-19 --
Addendum. Riemann’s Invariant Definition of the Curvature Tensor 4D-24 --
CHAPTER 5. THE ABSOLUTE DIFFERENTIAL CALCULUS (THE RICCI CALCULUS); OR, THE DEBAUCH OF INDICES (5-1 to 5-24) --
Covariant derivatives 5-1 --
Ricci’s Lemma 5-6 --
Ricci’s Identities 5-8 --
The curvature tensor 5-9 --
The Test Case; second version 5-12 --
Classical connections 5-17 --
The torsion tensor 5-18 --
Geodesics 5-19 --
Bianchi’s identities 5-21 --
CHAPTER 6. THE V OPERATOR (6-1 to 6-42) --
Koszul connections 6-1 --
Covariant derivatives 6-3 --
Parallel translation 6-10 --
The torsion tensor 6-14 --
The Levi-Civita connection 6-17 --
The curvature tensor 6-18 --
The Test Case; third version 6-21 --
HAPTER 6. The v OPERATOR (6-1 to 6-42) - Cont. --
Bianchi’s identities 6-25 --
Geodesics 6-28 --
The First Variation Formula 6-29 --
Addendum 1. Connections with the same Geodesics 6-32 --
Addendum 2. Riemann’s Invariant Definition of the Curvature Tensor 6-40 --
CHAPTER 7. THE REPERE MOBILE (THE MOVING FRAME) (7-1 to 7-58) --
Moving frames 7-1 --
The structural equations of Eculidean space 7-4 --
The structural equations of a Riemannian manifold 7-12 --
The Test Case; fourth version 7-14 --
Adapted frames 7-17 --
The structural equations in polar coordinates 7-20 --
The Test Case; fifth version 7-22 --
The Test Case; sixth version - 7-23 --
’’The curvature determines the metric” 7-26 --
The 2-dimensional case 7-29 --
Cartan connections 7-32 --
Covariant derivatives and the torsion and curvature tensors 7-37 --
Bianchi’s identities ' 7-41 --
Addendum 1. Manifolds of Constant Curvature 7-44 Schur’s Theorem 7-46 --
The form of the metric in normal coordinates 7-49 --
Isothermic coordinates 7-51 --
Addendum 2. E. Cartan’s Treatment of Normal Coordinates 7-56 --
CHAPTER 8. CONNECTIONS IN PRINCIPAL BUNDLES (8-1 to 8-62) --
Principal bundles 8-1 --
Lie groups acting on manifolds 8-6 --
A new definition of Cartan connections 8-10 --
Ehresmann connections 8-16 --
Lifts 8-19 --
Parallel translation and covariant derivatives 8-22 --
The covariant differential and the curvature form 8-29 --
The dual form and the torsion form 8-30 --
The structural equations 8-33 --
The torsion and curvature tensors 8-36 --
The Test Case; seventh version 8-41 --
Bianchi’s identities 8-42 --
Summary 8-44 --
Addendum 1. The Tangent Bundle of F(M) 8-52 --
Addendum 2. Complete Connections 8-54 --
Addendum 3, Connections in Vector Bundles 8-56 --
Addendum 4. Flat Connections, and an Apology 8-61 --

MR, 42 #2369 (v. 1)

MR, 42 #6726 (v. 2)

MR, 51 #8962 (v. 3)

MR, 52 #15254a, 52 #15254b (v. 4-5)

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

¿Necesita ayuda?

Si necesita ayuda para encontrar información, puede visitar personalmente la biblioteca en Av. Alem 1253 Bahía Blanca, llamarnos por teléfono al 291 459 5116, o enviarnos un mensaje a biblioteca.antonio.monteiro@gmail.com

Powered by Koha